Spaces:
Runtime error
Runtime error
update nltk
Browse files
main.py
CHANGED
@@ -1,90 +1,96 @@
|
|
1 |
-
from flask import Flask, request, jsonify
|
2 |
-
import os
|
3 |
-
import nltk
|
4 |
-
from langchain.llms import LlamaCpp
|
5 |
-
from langchain.callbacks.manager import CallbackManager
|
6 |
-
from langchain.prompts import PromptTemplate
|
7 |
-
from langchain.schema.output_parser import StrOutputParser
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
"
|
43 |
-
Extract and summarize the
|
44 |
-
Text: {text}
|
45 |
-
Question: {question}
|
46 |
-
Output:""",
|
47 |
-
|
48 |
-
"
|
49 |
-
Extract and
|
50 |
-
Text: {text}
|
51 |
-
Question: {question}
|
52 |
-
Output:""",
|
53 |
-
|
54 |
-
"
|
55 |
-
|
56 |
-
Text: {text}
|
57 |
-
Question: {question}
|
58 |
-
Output:"""
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
template_key = "
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
import os
|
3 |
+
import nltk
|
4 |
+
from langchain.llms import LlamaCpp
|
5 |
+
from langchain.callbacks.manager import CallbackManager
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain.schema.output_parser import StrOutputParser
|
8 |
+
|
9 |
+
nltk_data_dir = "./nltk_data_dir/"
|
10 |
+
if not os.path.exists(nltk_data_dir):
|
11 |
+
os.makedirs(nltk_data_dir, exist_ok=True)
|
12 |
+
nltk.data.path.clear()
|
13 |
+
nltk.data.path.append(nltk_data_dir)
|
14 |
+
|
15 |
+
nltk.download('punkt',download_dir=nltk_data_dir)
|
16 |
+
|
17 |
+
app = Flask(__name__)
|
18 |
+
|
19 |
+
# Download model
|
20 |
+
if not os.path.exists('phi-2.Q4_K_M.gguf'):
|
21 |
+
os.system('wget https://huggingface.co/TheBloke/phi-2-GGUF/resolve/main/phi-2.Q4_K_M.gguf')
|
22 |
+
|
23 |
+
# Disable GPU usage
|
24 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
25 |
+
|
26 |
+
# Callback manager setup
|
27 |
+
callback_manager = CallbackManager([])
|
28 |
+
|
29 |
+
# Creating LlamaCpp instance
|
30 |
+
llm = LlamaCpp(
|
31 |
+
model_path="phi-2.Q4_K_M.gguf",
|
32 |
+
temperature=0.1,
|
33 |
+
n_gpu_layers=0,
|
34 |
+
n_batch=1024,
|
35 |
+
callback_manager=callback_manager,
|
36 |
+
verbose=True,
|
37 |
+
n_ctx=2048
|
38 |
+
)
|
39 |
+
|
40 |
+
# Define templates
|
41 |
+
templates = {
|
42 |
+
"work_experience": """Instruction:
|
43 |
+
Extract and summarize the work experience mentioned in the CV provided below. Focus solely on the details related to work history, including job titles, companies, and duration.
|
44 |
+
Text: {text}
|
45 |
+
Question: {question}
|
46 |
+
Output:""",
|
47 |
+
|
48 |
+
"certification": """Instruction:
|
49 |
+
Extract and summarize the certification history mentioned in the CV provided below. Include details such as degrees earned, institutions attended, and graduation years.
|
50 |
+
Text: {text}
|
51 |
+
Question: {question}
|
52 |
+
Output:""",
|
53 |
+
|
54 |
+
"contact_info": """Instruction:
|
55 |
+
Extract and provide the contact information mentioned in the CV provided below. Include details such as phone number, email address, and any other relevant contact links.
|
56 |
+
Text: {text}
|
57 |
+
Question: {question}
|
58 |
+
Output:""",
|
59 |
+
|
60 |
+
"skills": """Instruction:
|
61 |
+
Focus solely on extracting the skills mentioned in the text below, excluding any other details or context. Your answer should consist of concise skills.
|
62 |
+
Text: {text}
|
63 |
+
Question: {question}
|
64 |
+
Output:"""
|
65 |
+
}
|
66 |
+
|
67 |
+
@app.route('/', methods=['POST'])
|
68 |
+
def generate_text():
|
69 |
+
data = request.get_json()
|
70 |
+
question = data.get('question')
|
71 |
+
text = data.get('text')
|
72 |
+
|
73 |
+
if not question or not text:
|
74 |
+
return jsonify({"error": "Both 'question' and 'text' fields are required."}), 400
|
75 |
+
|
76 |
+
if question == "Please summarize the work experience mentioned in the CV.":
|
77 |
+
template_key = "work_experience"
|
78 |
+
elif question == "Please summarize the certification history mentioned in the CV without repeating the output only once.":
|
79 |
+
template_key = "certification"
|
80 |
+
elif question == "Please extract the contact information mentioned in the CV once.":
|
81 |
+
template_key = "contact_info"
|
82 |
+
elif question == "What are the 6 skills? Please provide a concise short answer of the only(skills) mentioned in the text without repeating the answer.":
|
83 |
+
template_key = "skills"
|
84 |
+
else:
|
85 |
+
return jsonify({"error": "Invalid question provided."}), 400
|
86 |
+
|
87 |
+
prompt = PromptTemplate(template=templates[template_key], input_variables=["question", "text"])
|
88 |
+
chain = prompt | llm | StrOutputParser()
|
89 |
+
response = chain.invoke({"question": question, "text": text})
|
90 |
+
|
91 |
+
return jsonify({"generated_text": response})
|
92 |
+
|
93 |
+
|
94 |
+
if __name__ == '__main__':
|
95 |
+
port = int(os.environ.get("PORT", 8000))
|
96 |
+
app.run( port= 8000)
|