Ahmed007 commited on
Commit
008045b
·
verified ·
1 Parent(s): 06980e1

update nltk

Browse files
Files changed (1) hide show
  1. main.py +96 -90
main.py CHANGED
@@ -1,90 +1,96 @@
1
- from flask import Flask, request, jsonify
2
- import os
3
- import nltk
4
- from langchain.llms import LlamaCpp
5
- from langchain.callbacks.manager import CallbackManager
6
- from langchain.prompts import PromptTemplate
7
- from langchain.schema.output_parser import StrOutputParser
8
-
9
- nltk.download('punkt')
10
-
11
- app = Flask(__name__)
12
-
13
- # Download model
14
- if not os.path.exists('phi-2.Q4_K_M.gguf'):
15
- os.system('wget https://huggingface.co/TheBloke/phi-2-GGUF/resolve/main/phi-2.Q4_K_M.gguf')
16
-
17
- # Disable GPU usage
18
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
19
-
20
- # Callback manager setup
21
- callback_manager = CallbackManager([])
22
-
23
- # Creating LlamaCpp instance
24
- llm = LlamaCpp(
25
- model_path="phi-2.Q4_K_M.gguf",
26
- temperature=0.1,
27
- n_gpu_layers=0,
28
- n_batch=1024,
29
- callback_manager=callback_manager,
30
- verbose=True,
31
- n_ctx=2048
32
- )
33
-
34
- # Define templates
35
- templates = {
36
- "work_experience": """Instruction:
37
- Extract and summarize the work experience mentioned in the CV provided below. Focus solely on the details related to work history, including job titles, companies, and duration.
38
- Text: {text}
39
- Question: {question}
40
- Output:""",
41
-
42
- "certification": """Instruction:
43
- Extract and summarize the certification history mentioned in the CV provided below. Include details such as degrees earned, institutions attended, and graduation years.
44
- Text: {text}
45
- Question: {question}
46
- Output:""",
47
-
48
- "contact_info": """Instruction:
49
- Extract and provide the contact information mentioned in the CV provided below. Include details such as phone number, email address, and any other relevant contact links.
50
- Text: {text}
51
- Question: {question}
52
- Output:""",
53
-
54
- "skills": """Instruction:
55
- Focus solely on extracting the skills mentioned in the text below, excluding any other details or context. Your answer should consist of concise skills.
56
- Text: {text}
57
- Question: {question}
58
- Output:"""
59
- }
60
-
61
- @app.route('/', methods=['POST'])
62
- def generate_text():
63
- data = request.get_json()
64
- question = data.get('question')
65
- text = data.get('text')
66
-
67
- if not question or not text:
68
- return jsonify({"error": "Both 'question' and 'text' fields are required."}), 400
69
-
70
- if question == "Please summarize the work experience mentioned in the CV.":
71
- template_key = "work_experience"
72
- elif question == "Please summarize the certification history mentioned in the CV without repeating the output only once.":
73
- template_key = "certification"
74
- elif question == "Please extract the contact information mentioned in the CV once.":
75
- template_key = "contact_info"
76
- elif question == "What are the 6 skills? Please provide a concise short answer of the only(skills) mentioned in the text without repeating the answer.":
77
- template_key = "skills"
78
- else:
79
- return jsonify({"error": "Invalid question provided."}), 400
80
-
81
- prompt = PromptTemplate(template=templates[template_key], input_variables=["question", "text"])
82
- chain = prompt | llm | StrOutputParser()
83
- response = chain.invoke({"question": question, "text": text})
84
-
85
- return jsonify({"generated_text": response})
86
-
87
-
88
- if __name__ == '__main__':
89
- port = int(os.environ.get("PORT", 8000))
90
- app.run( port= 8000)
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ import os
3
+ import nltk
4
+ from langchain.llms import LlamaCpp
5
+ from langchain.callbacks.manager import CallbackManager
6
+ from langchain.prompts import PromptTemplate
7
+ from langchain.schema.output_parser import StrOutputParser
8
+
9
+ nltk_data_dir = "./nltk_data_dir/"
10
+ if not os.path.exists(nltk_data_dir):
11
+ os.makedirs(nltk_data_dir, exist_ok=True)
12
+ nltk.data.path.clear()
13
+ nltk.data.path.append(nltk_data_dir)
14
+
15
+ nltk.download('punkt',download_dir=nltk_data_dir)
16
+
17
+ app = Flask(__name__)
18
+
19
+ # Download model
20
+ if not os.path.exists('phi-2.Q4_K_M.gguf'):
21
+ os.system('wget https://huggingface.co/TheBloke/phi-2-GGUF/resolve/main/phi-2.Q4_K_M.gguf')
22
+
23
+ # Disable GPU usage
24
+ os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
25
+
26
+ # Callback manager setup
27
+ callback_manager = CallbackManager([])
28
+
29
+ # Creating LlamaCpp instance
30
+ llm = LlamaCpp(
31
+ model_path="phi-2.Q4_K_M.gguf",
32
+ temperature=0.1,
33
+ n_gpu_layers=0,
34
+ n_batch=1024,
35
+ callback_manager=callback_manager,
36
+ verbose=True,
37
+ n_ctx=2048
38
+ )
39
+
40
+ # Define templates
41
+ templates = {
42
+ "work_experience": """Instruction:
43
+ Extract and summarize the work experience mentioned in the CV provided below. Focus solely on the details related to work history, including job titles, companies, and duration.
44
+ Text: {text}
45
+ Question: {question}
46
+ Output:""",
47
+
48
+ "certification": """Instruction:
49
+ Extract and summarize the certification history mentioned in the CV provided below. Include details such as degrees earned, institutions attended, and graduation years.
50
+ Text: {text}
51
+ Question: {question}
52
+ Output:""",
53
+
54
+ "contact_info": """Instruction:
55
+ Extract and provide the contact information mentioned in the CV provided below. Include details such as phone number, email address, and any other relevant contact links.
56
+ Text: {text}
57
+ Question: {question}
58
+ Output:""",
59
+
60
+ "skills": """Instruction:
61
+ Focus solely on extracting the skills mentioned in the text below, excluding any other details or context. Your answer should consist of concise skills.
62
+ Text: {text}
63
+ Question: {question}
64
+ Output:"""
65
+ }
66
+
67
+ @app.route('/', methods=['POST'])
68
+ def generate_text():
69
+ data = request.get_json()
70
+ question = data.get('question')
71
+ text = data.get('text')
72
+
73
+ if not question or not text:
74
+ return jsonify({"error": "Both 'question' and 'text' fields are required."}), 400
75
+
76
+ if question == "Please summarize the work experience mentioned in the CV.":
77
+ template_key = "work_experience"
78
+ elif question == "Please summarize the certification history mentioned in the CV without repeating the output only once.":
79
+ template_key = "certification"
80
+ elif question == "Please extract the contact information mentioned in the CV once.":
81
+ template_key = "contact_info"
82
+ elif question == "What are the 6 skills? Please provide a concise short answer of the only(skills) mentioned in the text without repeating the answer.":
83
+ template_key = "skills"
84
+ else:
85
+ return jsonify({"error": "Invalid question provided."}), 400
86
+
87
+ prompt = PromptTemplate(template=templates[template_key], input_variables=["question", "text"])
88
+ chain = prompt | llm | StrOutputParser()
89
+ response = chain.invoke({"question": question, "text": text})
90
+
91
+ return jsonify({"generated_text": response})
92
+
93
+
94
+ if __name__ == '__main__':
95
+ port = int(os.environ.get("PORT", 8000))
96
+ app.run( port= 8000)