|
import gradio as gr |
|
import asyncio |
|
from huggingface_hub import AsyncInferenceClient |
|
import os |
|
hf = os.getenv("HF") |
|
client = AsyncInferenceClient("openai/clip-vit-large-patch14", token=hf) |
|
|
|
def image_classifier(inp): |
|
class_names = ["0", "1"] |
|
inp.save("why.png") |
|
sunflower_path = "why.png" |
|
hf = os.getenv("HF") |
|
r = asyncio.run(client.zero_shot_image_classification("why.png", candidate_labels=["mouth", "other"]), token=) |
|
c = {} |
|
c[r[0]["label"]] = r[0]["score"] |
|
c[r[1]["label"]] = 1 - r[0]["score"] |
|
return c |
|
|
|
|
|
demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label") |
|
demo.launch(debug=True) |
|
|