Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,12 @@
|
|
1 |
-
from huggingface_hub import from_pretrained_keras
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
|
5 |
-
model = from_pretrained_keras("araeynn/validation_model")
|
6 |
-
|
7 |
|
8 |
def image_classifier(inp):
|
9 |
class_names = ["0", "1"]
|
10 |
inp.save("why.png")
|
11 |
sunflower_path = "why.png"
|
12 |
-
|
13 |
-
img_array = tf.keras.utils.img_to_array(img)
|
14 |
-
img_array = tf.expand_dims(img_array, 0) # Create a batch
|
15 |
-
|
16 |
-
predictions = model.predict(img_array)
|
17 |
-
score = tf.nn.softmax(predictions)
|
18 |
-
r = {}
|
19 |
-
print(score)
|
20 |
-
for s in score:
|
21 |
-
print(s)
|
22 |
-
r = {"0":score, "1":1 - score}
|
23 |
return r
|
24 |
|
25 |
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import AsyncInferenceClient
|
3 |
+
client = AsyncInferenceClient()
|
|
|
|
|
4 |
|
5 |
def image_classifier(inp):
|
6 |
class_names = ["0", "1"]
|
7 |
inp.save("why.png")
|
8 |
sunflower_path = "why.png"
|
9 |
+
r = await client.zero_shot_image_classification("why.png", labels=["mouth", "other"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
return r
|
11 |
|
12 |
|