Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_keras
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
model = from_pretrained_keras("araeynn/e")
|
5 |
+
|
6 |
+
def image_classifier(inp):
|
7 |
+
inp.save("/why.png")
|
8 |
+
sunflower_path = "/why.png"
|
9 |
+
img = tf.keras.utils.load_img(
|
10 |
+
sunflower_path, target_size=(img_height, img_width)
|
11 |
+
)
|
12 |
+
img_array = tf.keras.utils.img_to_array(img)
|
13 |
+
img_array = tf.expand_dims(img_array, 0) # Create a batch
|
14 |
+
|
15 |
+
predictions = model.predict(img_array)
|
16 |
+
score = tf.nn.softmax(predictions)
|
17 |
+
r = {}
|
18 |
+
for class_name in class_names:
|
19 |
+
r[class_name] = score[0][class_names.index(class_name)]
|
20 |
+
return r
|
21 |
+
demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label")
|
22 |
+
demo.launch(debug=True)
|