Update app.py
Browse files
app.py
CHANGED
@@ -4,21 +4,23 @@ import tensorflow as tf
|
|
4 |
|
5 |
model = from_pretrained_keras("araeynn/validation_model")
|
6 |
|
|
|
7 |
def image_classifier(inp):
|
8 |
class_names = ["0", "1"]
|
9 |
inp.save("why.png")
|
10 |
sunflower_path = "why.png"
|
11 |
-
img = tf.keras.utils.load_img(
|
12 |
-
sunflower_path, target_size=(256, 256)
|
13 |
-
)
|
14 |
img_array = tf.keras.utils.img_to_array(img)
|
15 |
-
img_array = tf.expand_dims(img_array, 0)
|
16 |
|
17 |
predictions = model.predict(img_array)
|
18 |
score = tf.nn.softmax(predictions)
|
19 |
r = {}
|
|
|
20 |
for class_name in class_names:
|
21 |
-
|
22 |
return r
|
|
|
|
|
23 |
demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label")
|
24 |
-
demo.launch(debug=True)
|
|
|
4 |
|
5 |
model = from_pretrained_keras("araeynn/validation_model")
|
6 |
|
7 |
+
|
8 |
def image_classifier(inp):
|
9 |
class_names = ["0", "1"]
|
10 |
inp.save("why.png")
|
11 |
sunflower_path = "why.png"
|
12 |
+
img = tf.keras.utils.load_img(sunflower_path, target_size=(256, 256))
|
|
|
|
|
13 |
img_array = tf.keras.utils.img_to_array(img)
|
14 |
+
img_array = tf.expand_dims(img_array, 0) # Create a batch
|
15 |
|
16 |
predictions = model.predict(img_array)
|
17 |
score = tf.nn.softmax(predictions)
|
18 |
r = {}
|
19 |
+
print(score)
|
20 |
for class_name in class_names:
|
21 |
+
r[class_name] = score[0][class_names.index(class_name)]
|
22 |
return r
|
23 |
+
|
24 |
+
|
25 |
demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label")
|
26 |
+
demo.launch(debug=True)
|