import gradio as gr import asyncio from huggingface_hub import AsyncInferenceClient import os hf = os.getenv("HF") client = AsyncInferenceClient("google/siglip-base-patch16-224", token=hf) def image_classifier(inp): class_names = ["0", "1"] inp.save("why.png") sunflower_path = "why.png" hf = os.getenv("HF") r = asyncio.run(client.zero_shot_image_classification("why.png", candidate_labels=["mouth or teeth", "not mouth"])) c = {} a = r[0]["score"] + r[1]["score"] c[r[0]["label"]] = r[0]["score"] / a c[r[1]["label"]] = r[1]["score"] / a return c demo = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label") demo.launch(debug=True)