curfox_kpi_api / main.py
Arafath10's picture
Update main.py
43fcc56 verified
raw
history blame
7.74 kB
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import aiohttp
global data
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Declare the continuous function as an async function.
#async def your_continuous_function():
def your_continuous_function_old(X_Tenant):
import pandas as pd
while True:
print("data fetcher running.....")
# Initialize an empty DataFrame to store the combined data
combined_df = pd.DataFrame()
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-metadata"
payload = {}
headers = {
'Accept': 'application/json',
'X-Tenant': X_Tenant, #'royalexpress',
'Authorization': 'Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJhdWQiOiIxIiwianRpIjoiZWQzYjVkN2JkNTU5YmQxNWNmYzdiNThhM2UyZDlmNGEyMGQzMDFjMWY4ZWVlNDY2ZDBlZTAxYmMzZmVjMTU1ZWNjNzMxOWUxMGUxZGY3NDMiLCJpYXQiOjE3MDIyNzIyMDcuNjg0OTE2LCJuYmYiOjE3MDIyNzIyMDcuNjg0OTIzLCJleHAiOjE3MzM4OTQ2MDcuNjczNDYyLCJzdWIiOiIxIiwic2NvcGVzIjpbXX0.NFZvGO0GjoD7u3FRiIewRRoWu7ouUmKTKnCei8LMwQWzLntBLYcj_Bs21amjcHtzdbQNyCovHSDHJQaLJnD04kY1JRAdDC_OLi2YiZoSvnSJxNjWiuC4kwNE59Ndwu3o2iAzB-nd1EvyMnU_na7WxICRP8OegrpM-_q6M-wgnv7igaNeWjdxnXdtxbr-Zz7N2Xv2skWZwoDce37kWvH1tK7eqMK0uWqqyhBpli22CmkKPduHUNKMNOEnGTskeDaTuX5za2Lr8CNa34_FdKu3Y5CrFMGDBHT_UGALocpr80_38iifXm7WDl6ZIA1iYy6dBvCTeoC_aFo1X5FIrFbJgMCokW4VH0Q2ljm9ty0W7ATAiKrM1GIVFS5Dir4A1KI3LSeE459SqZpqsoJmaU95zSYbfnU_oZ9UpvW59nFgD6yJ8hGHyYnjhCS0jmxk3cq93T9X1rNWo2t0A3XYXgqZYnZrZpdrSbn-JVoX_NW1QC6RtmAGm7AtZ3GBrzxwu3m_7MicMI7Tu4W6d2WD9kZjq0khBUrm2DVZJzN2BRmH-a7JkAqJ0icpHQ_2Tc6T-95axebp6QEmHHXBKILNNwWxucZ0l-Ny0TuUivqn0m9gSJJDkA8ssWyBkzzJ9fUeRmJGbUFTeemPhMrF3_cvTUZ0J7IC2CK7qWePcHPQ-sy0is4'
}
count = requests.request("GET", url, headers=headers).json()["data"]["order_count"]//200
count = count + 2
print(count)
# Loop through pages 1 to 4
for page in range(1,30):
try:
# Update the payload for each page
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=200&page="+str(page)
payload = {}
headers = {
'Accept': 'application/json',
'X-Tenant': 'royalexpress',
}
response = requests.request("GET", url, headers=headers)
import pandas as pd
import json
# Sample JSON response
json_response = response.json()
# Extracting 'data' for conversion
data = json_response['data']
df = pd.json_normalize(data)
# Concatenate the current page's DataFrame with the combined DataFrame
combined_df = pd.concat([combined_df, df], ignore_index=True)
except:
print("data over")
print("data collected....")
data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
data = data[['delivery_possibility','status.name']]
data = data[data['delivery_possibility'].between(0, 100)]
return data
#await asyncio.sleep(43200) # Adjust the sleep interval as needed
# # Create a startup event.
# @app.on_event("startup")
# async def startup_event():
# # Start the continuous function as a background task.
# asyncio.create_task(your_continuous_function())
async def fetch_page(session, page ,X_Tenant):
try:
url = f"https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=200&page={page}"
headers = {
'Accept': 'application/json',
'X-Tenant': X_Tenant,#'royalexpress',
}
async with session.get(url, headers=headers) as response:
json_response = await response.json()
data = json_response['data']
df = pd.json_normalize(data)
return df
except Exception as e:
print(f"Failed to fetch data for page {page}: {e}")
return pd.DataFrame() # Return an empty DataFrame in case of error
@app.get("/kpi_results")
async def read_root(X_Tenant):
combined_df = pd.DataFrame()
async with aiohttp.ClientSession() as session:
tasks = [fetch_page(session, page, X_Tenant) for page in range(1, 30)]
results = await asyncio.gather(*tasks)
# Combine all the DataFrames from each page
combined_df = pd.concat(results, ignore_index=True)
print("Data collected....")
# Filter the data
filtered_data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
filtered_data = filtered_data[['delivery_possibility', 'status.name']]
filtered_data = filtered_data[filtered_data['delivery_possibility'].between(0, 100)]
# existing code===========================
data = filtered_data
status_counts_more_than_80 = data[data['delivery_possibility'] > 80]['status.name'].value_counts()
status_counts_50_to_80 = data[(data['delivery_possibility'] >= 50) & (data['delivery_possibility'] <= 80)]['status.name'].value_counts()
status_counts_30_to_49 = data[(data['delivery_possibility'] >= 30) & (data['delivery_possibility'] <= 49)]['status.name'].value_counts()
status_counts_below_30 = data[data['delivery_possibility'] < 30]['status.name'].value_counts()
print(status_counts_more_than_80,status_counts_50_to_80,status_counts_30_to_49,status_counts_below_30)
try:
status_counts_more_than_80_0 = int(status_counts_more_than_80[0])
except:
status_counts_more_than_80_0 = 0
try:
status_counts_more_than_80_1 = int(status_counts_more_than_80[1])
except:
status_counts_more_than_80_1 = 0
try:
status_counts_50_to_80_0 = int(status_counts_50_to_80[0])
except:
status_counts_50_to_80_0 = 0
try:
status_counts_50_to_80_1 = int(status_counts_50_to_80[1])
except:
status_counts_50_to_80_1 = 0
try:
status_counts_30_to_49_0 = int(status_counts_30_to_49[0])
except:
status_counts_30_to_49_0 = 0
try:
status_counts_30_to_49_1 = int(status_counts_30_to_49[1])
except:
status_counts_30_to_49_1 = 0
try:
status_counts_below_30_0 = int(status_counts_below_30[0])
except:
status_counts_below_30_0 = 0
try:
status_counts_below_30_1 = int(status_counts_below_30[1])
except:
status_counts_below_30_1 = 0
kpi_result = {
"kpi_result": {
"status_counts_more_than_80": {
"correct_values": status_counts_more_than_80_0,
"incorrect_values": status_counts_more_than_80_1
},
"status_counts_50_to_80": {
"correct_values": status_counts_50_to_80_0,
"incorrect_values": status_counts_50_to_80_1
},
"status_counts_30_to_49": {
"correct_values": status_counts_30_to_49_0,
"incorrect_values": status_counts_30_to_49_1
},
"status_counts_below_30": {
"correct_values": status_counts_below_30_0,
"incorrect_values": status_counts_below_30_1
}
}
}
return kpi_result