curfox_kpi_api / main.py
Arafath10's picture
Update main.py
43fcc56 verified
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import aiohttp
global data
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Declare the continuous function as an async function.
#async def your_continuous_function():
def your_continuous_function_old(X_Tenant):
import pandas as pd
while True:
print("data fetcher running.....")
# Initialize an empty DataFrame to store the combined data
combined_df = pd.DataFrame()
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-metadata"
payload = {}
headers = {
'Accept': 'application/json',
'X-Tenant': X_Tenant, #'royalexpress',
'Authorization': 'Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJhdWQiOiIxIiwianRpIjoiZWQzYjVkN2JkNTU5YmQxNWNmYzdiNThhM2UyZDlmNGEyMGQzMDFjMWY4ZWVlNDY2ZDBlZTAxYmMzZmVjMTU1ZWNjNzMxOWUxMGUxZGY3NDMiLCJpYXQiOjE3MDIyNzIyMDcuNjg0OTE2LCJuYmYiOjE3MDIyNzIyMDcuNjg0OTIzLCJleHAiOjE3MzM4OTQ2MDcuNjczNDYyLCJzdWIiOiIxIiwic2NvcGVzIjpbXX0.NFZvGO0GjoD7u3FRiIewRRoWu7ouUmKTKnCei8LMwQWzLntBLYcj_Bs21amjcHtzdbQNyCovHSDHJQaLJnD04kY1JRAdDC_OLi2YiZoSvnSJxNjWiuC4kwNE59Ndwu3o2iAzB-nd1EvyMnU_na7WxICRP8OegrpM-_q6M-wgnv7igaNeWjdxnXdtxbr-Zz7N2Xv2skWZwoDce37kWvH1tK7eqMK0uWqqyhBpli22CmkKPduHUNKMNOEnGTskeDaTuX5za2Lr8CNa34_FdKu3Y5CrFMGDBHT_UGALocpr80_38iifXm7WDl6ZIA1iYy6dBvCTeoC_aFo1X5FIrFbJgMCokW4VH0Q2ljm9ty0W7ATAiKrM1GIVFS5Dir4A1KI3LSeE459SqZpqsoJmaU95zSYbfnU_oZ9UpvW59nFgD6yJ8hGHyYnjhCS0jmxk3cq93T9X1rNWo2t0A3XYXgqZYnZrZpdrSbn-JVoX_NW1QC6RtmAGm7AtZ3GBrzxwu3m_7MicMI7Tu4W6d2WD9kZjq0khBUrm2DVZJzN2BRmH-a7JkAqJ0icpHQ_2Tc6T-95axebp6QEmHHXBKILNNwWxucZ0l-Ny0TuUivqn0m9gSJJDkA8ssWyBkzzJ9fUeRmJGbUFTeemPhMrF3_cvTUZ0J7IC2CK7qWePcHPQ-sy0is4'
}
count = requests.request("GET", url, headers=headers).json()["data"]["order_count"]//200
count = count + 2
print(count)
# Loop through pages 1 to 4
for page in range(1,30):
try:
# Update the payload for each page
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=200&page="+str(page)
payload = {}
headers = {
'Accept': 'application/json',
'X-Tenant': 'royalexpress',
}
response = requests.request("GET", url, headers=headers)
import pandas as pd
import json
# Sample JSON response
json_response = response.json()
# Extracting 'data' for conversion
data = json_response['data']
df = pd.json_normalize(data)
# Concatenate the current page's DataFrame with the combined DataFrame
combined_df = pd.concat([combined_df, df], ignore_index=True)
except:
print("data over")
print("data collected....")
data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
data = data[['delivery_possibility','status.name']]
data = data[data['delivery_possibility'].between(0, 100)]
return data
#await asyncio.sleep(43200) # Adjust the sleep interval as needed
# # Create a startup event.
# @app.on_event("startup")
# async def startup_event():
# # Start the continuous function as a background task.
# asyncio.create_task(your_continuous_function())
async def fetch_page(session, page ,X_Tenant):
try:
url = f"https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=200&page={page}"
headers = {
'Accept': 'application/json',
'X-Tenant': X_Tenant,#'royalexpress',
}
async with session.get(url, headers=headers) as response:
json_response = await response.json()
data = json_response['data']
df = pd.json_normalize(data)
return df
except Exception as e:
print(f"Failed to fetch data for page {page}: {e}")
return pd.DataFrame() # Return an empty DataFrame in case of error
@app.get("/kpi_results")
async def read_root(X_Tenant):
combined_df = pd.DataFrame()
async with aiohttp.ClientSession() as session:
tasks = [fetch_page(session, page, X_Tenant) for page in range(1, 30)]
results = await asyncio.gather(*tasks)
# Combine all the DataFrames from each page
combined_df = pd.concat(results, ignore_index=True)
print("Data collected....")
# Filter the data
filtered_data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
filtered_data = filtered_data[['delivery_possibility', 'status.name']]
filtered_data = filtered_data[filtered_data['delivery_possibility'].between(0, 100)]
# existing code===========================
data = filtered_data
status_counts_more_than_80 = data[data['delivery_possibility'] > 80]['status.name'].value_counts()
status_counts_50_to_80 = data[(data['delivery_possibility'] >= 50) & (data['delivery_possibility'] <= 80)]['status.name'].value_counts()
status_counts_30_to_49 = data[(data['delivery_possibility'] >= 30) & (data['delivery_possibility'] <= 49)]['status.name'].value_counts()
status_counts_below_30 = data[data['delivery_possibility'] < 30]['status.name'].value_counts()
print(status_counts_more_than_80,status_counts_50_to_80,status_counts_30_to_49,status_counts_below_30)
try:
status_counts_more_than_80_0 = int(status_counts_more_than_80[0])
except:
status_counts_more_than_80_0 = 0
try:
status_counts_more_than_80_1 = int(status_counts_more_than_80[1])
except:
status_counts_more_than_80_1 = 0
try:
status_counts_50_to_80_0 = int(status_counts_50_to_80[0])
except:
status_counts_50_to_80_0 = 0
try:
status_counts_50_to_80_1 = int(status_counts_50_to_80[1])
except:
status_counts_50_to_80_1 = 0
try:
status_counts_30_to_49_0 = int(status_counts_30_to_49[0])
except:
status_counts_30_to_49_0 = 0
try:
status_counts_30_to_49_1 = int(status_counts_30_to_49[1])
except:
status_counts_30_to_49_1 = 0
try:
status_counts_below_30_0 = int(status_counts_below_30[0])
except:
status_counts_below_30_0 = 0
try:
status_counts_below_30_1 = int(status_counts_below_30[1])
except:
status_counts_below_30_1 = 0
kpi_result = {
"kpi_result": {
"status_counts_more_than_80": {
"correct_values": status_counts_more_than_80_0,
"incorrect_values": status_counts_more_than_80_1
},
"status_counts_50_to_80": {
"correct_values": status_counts_50_to_80_0,
"incorrect_values": status_counts_50_to_80_1
},
"status_counts_30_to_49": {
"correct_values": status_counts_30_to_49_0,
"incorrect_values": status_counts_30_to_49_1
},
"status_counts_below_30": {
"correct_values": status_counts_below_30_0,
"incorrect_values": status_counts_below_30_1
}
}
}
return kpi_result