Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -52,11 +52,12 @@ def train_the_model(data):
|
|
52 |
xgb_model.fit(X_new, y_new)
|
53 |
dump(xgb_model,'xgb_model.joblib')
|
54 |
|
55 |
-
|
56 |
y_pred = xgb_model.predict(X_test)
|
57 |
accuracy = accuracy_score(y_test, y_pred)
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
except:
|
62 |
data = data
|
@@ -113,11 +114,6 @@ def train_the_model(data):
|
|
113 |
accuracy = accuracy_score(y_test, y_pred)
|
114 |
classification_rep = classification_report(y_test, y_pred)
|
115 |
|
116 |
-
# Print the results
|
117 |
-
print("Accuracy:", accuracy)
|
118 |
-
print("Classification Report:\n", classification_report(y_test, y_pred))
|
119 |
-
|
120 |
-
|
121 |
# Save the model
|
122 |
model_filename = 'xgb_model.joblib'
|
123 |
dump(best_xgb, model_filename)
|
@@ -126,9 +122,7 @@ def train_the_model(data):
|
|
126 |
encoders_filename = 'encoders.joblib'
|
127 |
dump(encoders, encoders_filename)
|
128 |
|
129 |
-
|
130 |
-
print(f"Encoders saved as {encoders_filename}")
|
131 |
-
print("new base model trained")
|
132 |
|
133 |
@app.get("/trigger_the_data_fecher")
|
134 |
async def your_continuous_function(page: int,paginate: int,Tenant: str):
|
@@ -164,9 +158,9 @@ async def your_continuous_function(page: int,paginate: int,Tenant: str):
|
|
164 |
print("data collected from page : "+str(page))
|
165 |
#data.to_csv("new.csv")
|
166 |
|
167 |
-
train_the_model(data)
|
168 |
|
169 |
-
return {"
|
170 |
|
171 |
|
172 |
|
|
|
52 |
xgb_model.fit(X_new, y_new)
|
53 |
dump(xgb_model,'xgb_model.joblib')
|
54 |
|
55 |
+
|
56 |
y_pred = xgb_model.predict(X_test)
|
57 |
accuracy = accuracy_score(y_test, y_pred)
|
58 |
+
classification_rep = classification_report(y_test, y_pred)
|
59 |
+
return accuracy,classification_rep,"Model finetuned with new data."
|
60 |
+
|
61 |
|
62 |
except:
|
63 |
data = data
|
|
|
114 |
accuracy = accuracy_score(y_test, y_pred)
|
115 |
classification_rep = classification_report(y_test, y_pred)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
117 |
# Save the model
|
118 |
model_filename = 'xgb_model.joblib'
|
119 |
dump(best_xgb, model_filename)
|
|
|
122 |
encoders_filename = 'encoders.joblib'
|
123 |
dump(encoders, encoders_filename)
|
124 |
|
125 |
+
return accuracy,classification_rep,"base Model trained"
|
|
|
|
|
126 |
|
127 |
@app.get("/trigger_the_data_fecher")
|
128 |
async def your_continuous_function(page: int,paginate: int,Tenant: str):
|
|
|
158 |
print("data collected from page : "+str(page))
|
159 |
#data.to_csv("new.csv")
|
160 |
|
161 |
+
accuracy,classification_rep,message = train_the_model(data)
|
162 |
|
163 |
+
return {"message":message,"page_number":page,"data_count":data_count,"accuracy":accuracy,"classification_rep":classification_rep}
|
164 |
|
165 |
|
166 |
|