Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -5,6 +5,12 @@ import requests
|
|
5 |
import pandas as pd
|
6 |
import json
|
7 |
import httpx
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
app = FastAPI()
|
9 |
|
10 |
app.add_middleware(
|
@@ -15,8 +21,6 @@ app.add_middleware(
|
|
15 |
allow_headers=["*"],
|
16 |
)
|
17 |
|
18 |
-
global page
|
19 |
-
page = 1
|
20 |
# Declare the continuous function as an async function.
|
21 |
#async def your_continuous_function():
|
22 |
|
@@ -27,12 +31,114 @@ page = 1
|
|
27 |
#async def startup_event():
|
28 |
# Start the continuous function as a background task.
|
29 |
#asyncio.create_task(your_continuous_function())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
async def your_continuous_function():
|
33 |
-
global page
|
34 |
|
35 |
-
page+=1
|
36 |
return "model trained with new page : "+str(page)+" data"
|
37 |
|
38 |
@app.get("/test_api")
|
|
|
5 |
import pandas as pd
|
6 |
import json
|
7 |
import httpx
|
8 |
+
import pandas as pd
|
9 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
10 |
+
from sklearn.preprocessing import LabelEncoder
|
11 |
+
from xgboost import XGBClassifierS
|
12 |
+
from sklearn.metrics import accuracy_score, classification_report
|
13 |
+
|
14 |
app = FastAPI()
|
15 |
|
16 |
app.add_middleware(
|
|
|
21 |
allow_headers=["*"],
|
22 |
)
|
23 |
|
|
|
|
|
24 |
# Declare the continuous function as an async function.
|
25 |
#async def your_continuous_function():
|
26 |
|
|
|
31 |
#async def startup_event():
|
32 |
# Start the continuous function as a background task.
|
33 |
#asyncio.create_task(your_continuous_function())
|
34 |
+
|
35 |
+
from joblib import dump
|
36 |
+
|
37 |
+
def train_the_model(data):
|
38 |
+
data = data
|
39 |
+
|
40 |
+
# Select columns
|
41 |
+
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
|
42 |
+
'customer_email', 'cod', 'weight',
|
43 |
+
'origin_city.name', 'destination_city.name', 'status.name']
|
44 |
+
|
45 |
+
# Handling missing values
|
46 |
+
data_filled = data[selected_columns].fillna('Missing')
|
47 |
+
|
48 |
+
# Encoding categorical variables
|
49 |
+
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
|
50 |
+
for col, encoder in encoders.items():
|
51 |
+
data_filled[col] = encoder.fit_transform(data_filled[col])
|
52 |
+
|
53 |
+
# Splitting the dataset
|
54 |
+
X = data_filled.drop('status.name', axis=1)
|
55 |
+
y = data_filled['status.name']
|
56 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
57 |
+
|
58 |
+
# Setup the hyperparameter grid to search
|
59 |
+
param_grid = {
|
60 |
+
'max_depth': [3, 4, 5],
|
61 |
+
'learning_rate': [0.01, 0.1, 0.4],
|
62 |
+
'n_estimators': [100, 200, 300],
|
63 |
+
'subsample': [0.8, 0.9, 1],
|
64 |
+
'colsample_bytree': [0.3, 0.7]
|
65 |
+
}
|
66 |
+
|
67 |
+
# Initialize the classifier
|
68 |
+
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
|
69 |
+
|
70 |
+
# Setup GridSearchCV
|
71 |
+
grid_search = GridSearchCV(xgb, param_grid, cv=10, n_jobs=-1, scoring='accuracy')
|
72 |
+
|
73 |
+
# Fit the grid search to the data
|
74 |
+
grid_search.fit(X_train, y_train)
|
75 |
+
|
76 |
+
# Get the best parameters
|
77 |
+
best_params = grid_search.best_params_
|
78 |
+
print("Best parameters:", best_params)
|
79 |
+
|
80 |
+
# Train the model with best parameters
|
81 |
+
best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
|
82 |
+
best_xgb.fit(X_train, y_train)
|
83 |
+
|
84 |
+
# Predict on the test set
|
85 |
+
y_pred = best_xgb.predict(X_test)
|
86 |
+
y_pred_proba = best_xgb.predict_proba(X_test)
|
87 |
+
|
88 |
+
# Evaluate the model
|
89 |
+
accuracy = accuracy_score(y_test, y_pred)
|
90 |
+
classification_rep = classification_report(y_test, y_pred)
|
91 |
+
|
92 |
+
# Print the results
|
93 |
+
print("Accuracy:", accuracy)
|
94 |
+
print("Classification Report:\n", classification_report(y_test, y_pred))
|
95 |
+
|
96 |
+
|
97 |
+
# Save the model
|
98 |
+
model_filename = 'xgb_model.joblib'
|
99 |
+
dump(best_xgb, model_filename)
|
100 |
+
|
101 |
+
# Save the encoders
|
102 |
+
encoders_filename = 'encoders.joblib'
|
103 |
+
dump(encoders, encoders_filename)
|
104 |
+
|
105 |
+
print(f"Model saved as {model_filename}")
|
106 |
+
print(f"Encoders saved as {encoders_filename}")
|
107 |
+
|
108 |
+
@app.get("/trigger_the_data_fecher_every_30min")
|
109 |
+
async def your_continuous_function(page: int):
|
110 |
+
print("data fetcher running.....")
|
111 |
+
|
112 |
+
# Initialize an empty DataFrame to store the combined data
|
113 |
+
combined_df = pd.DataFrame()
|
114 |
+
|
115 |
+
# Update the payload for each page
|
116 |
+
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=500&page="+str(page)
|
117 |
+
|
118 |
+
payload = {}
|
119 |
+
headers = {
|
120 |
+
'Accept': 'application/json',
|
121 |
+
'X-Tenant': 'royalexpress'
|
122 |
+
}
|
123 |
+
|
124 |
+
response = requests.request("GET", url, headers=headers, data=payload)
|
125 |
+
|
126 |
+
# Sample JSON response
|
127 |
+
json_response = response.json()
|
128 |
+
# Extracting 'data' for conversion
|
129 |
+
data = json_response['data']
|
130 |
+
|
131 |
+
df = pd.json_normalize(data)
|
132 |
+
|
133 |
+
# Concatenate the current page's DataFrame with the combined DataFrame
|
134 |
+
combined_df = pd.concat([combined_df, df], ignore_index=True)
|
135 |
+
|
136 |
+
data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
|
137 |
+
print("data collected from page : "+str(page))
|
138 |
+
#data.to_csv("new.csv")
|
139 |
|
140 |
+
train_the_model(data)
|
|
|
|
|
141 |
|
|
|
142 |
return "model trained with new page : "+str(page)+" data"
|
143 |
|
144 |
@app.get("/test_api")
|