Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -57,7 +57,7 @@ async def train_the_model(Tenant: str):
|
|
57 |
# Select columns
|
58 |
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
|
59 |
'customer_email', 'cod', 'weight', 'origin_city.name',
|
60 |
-
'destination_city.name',
|
61 |
|
62 |
# Handling missing values
|
63 |
#data_filled = data[selected_columns].fillna('Missing')
|
@@ -126,7 +126,10 @@ async def your_continuous_function(page: int,paginate: int,Tenant: str):
|
|
126 |
|
127 |
|
128 |
# Update the payload for each page
|
129 |
-
|
|
|
|
|
|
|
130 |
|
131 |
payload = {}
|
132 |
headers = {
|
@@ -161,7 +164,7 @@ async def your_continuous_function(page: int,paginate: int,Tenant: str):
|
|
161 |
|
162 |
df.to_csv(f"model/{Tenant}trainer_data.csv")
|
163 |
print("data created")
|
164 |
-
return {"message":"done","page_number":page,"data_count":data_count}
|
165 |
|
166 |
|
167 |
|
@@ -194,7 +197,9 @@ def predict(
|
|
194 |
pickup_address: str,
|
195 |
origin_city_name: str,
|
196 |
destination_city_name: str,
|
197 |
-
origin_country: str
|
|
|
|
|
198 |
|
199 |
try:
|
200 |
# Load your trained model and encoders
|
@@ -223,7 +228,8 @@ def predict(
|
|
223 |
'cod': float(cod),
|
224 |
'weight': float(weight),
|
225 |
'origin_city.name':origin_city_name,
|
226 |
-
'destination_city.name':destination_city_name
|
|
|
227 |
}
|
228 |
input_df = pd.DataFrame([input_data])
|
229 |
|
|
|
57 |
# Select columns
|
58 |
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
|
59 |
'customer_email', 'cod', 'weight', 'origin_city.name',
|
60 |
+
'destination_city.name','created_at','status.name']
|
61 |
|
62 |
# Handling missing values
|
63 |
#data_filled = data[selected_columns].fillna('Missing')
|
|
|
126 |
|
127 |
|
128 |
# Update the payload for each page
|
129 |
+
|
130 |
+
#url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate="+str(paginate)+"&page="+str(page)
|
131 |
+
url = "https://v1.api.curfox.com/api/ml/order-list?sort=id&paginate="+str(paginate)+"&page="+str(page)
|
132 |
+
|
133 |
|
134 |
payload = {}
|
135 |
headers = {
|
|
|
164 |
|
165 |
df.to_csv(f"model/{Tenant}trainer_data.csv")
|
166 |
print("data created")
|
167 |
+
return {"message":"done","page_number":page,"data_count":data_count,'X-Tenant': Tenant}
|
168 |
|
169 |
|
170 |
|
|
|
197 |
pickup_address: str,
|
198 |
origin_city_name: str,
|
199 |
destination_city_name: str,
|
200 |
+
origin_country: str,
|
201 |
+
created_at: str
|
202 |
+
):
|
203 |
|
204 |
try:
|
205 |
# Load your trained model and encoders
|
|
|
228 |
'cod': float(cod),
|
229 |
'weight': float(weight),
|
230 |
'origin_city.name':origin_city_name,
|
231 |
+
'destination_city.name':destination_city_name,
|
232 |
+
'created_at':created_at
|
233 |
}
|
234 |
input_df = pd.DataFrame([input_data])
|
235 |
|