from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import pandas as pd import numpy as np import joblib # Load your trained model and encoders xgb_model = joblib.load("xgb_model.joblib") encoders = joblib.load("encoders.joblib") # Function to handle unseen labels during encoding def safe_transform(encoder, column): classes = encoder.classes_ return [encoder.transform([x])[0] if x in classes else -1 for x in column] # Define FastAPI app app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Endpoint for making predictions @app.post("/predict") def predict(customer_name: str, customer_address: str, customer_phone: str, customer_email: str, cod:str, weight: str, pickup_address: str, origin_city_name: str, destination_city_name: str): # Convert input data to DataFrame input_data = { 'customer_name': customer_name, 'customer_address': customer_address, 'customer_phone': customer_phone, 'customer_email': customer_email, 'cod': float(cod), 'weight': float(weight), 'pickup_address':pickup_address, 'origin_city.name':origin_city_name, 'destination_city.name':destination_city_name } input_df = pd.DataFrame([input_data]) # Encode categorical variables using the same encoders used during training for col in input_df.columns: if col in encoders: input_df[col] = safe_transform(encoders[col], input_df[col]) # Predict and obtain probabilities pred = xgb_model.predict(input_df) pred_proba = xgb_model.predict_proba(input_df) # Output predicted_status = "Unknown" if pred[0] == -1 else encoders['status.name'].inverse_transform([pred])[0] probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown" if predicted_status == "RETURN TO CLIENT": probability = 100 - probability return {"Probability": round(probability,2)}