Spaces:
Paused
Paused
Update main.py
Browse files
main.py
CHANGED
|
@@ -2,6 +2,19 @@ from fastapi import FastAPI, HTTPException
|
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
app = FastAPI()
|
| 7 |
app.add_middleware(
|
|
@@ -12,11 +25,30 @@ app.add_middleware(
|
|
| 12 |
allow_headers=["*"],
|
| 13 |
)
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
|
|
|
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from fastapi.middleware.cors import CORSMiddleware
|
| 4 |
|
| 5 |
+
from transformers import AutoModel, AutoTokenizer
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
device = torch.device("cpu")
|
| 9 |
+
|
| 10 |
+
# Load the model and tokenizer
|
| 11 |
+
model = AutoModel.from_pretrained(
|
| 12 |
+
"nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True
|
| 13 |
+
)
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 15 |
+
"nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
|
| 19 |
app = FastAPI()
|
| 20 |
app.add_middleware(
|
|
|
|
| 25 |
allow_headers=["*"],
|
| 26 |
)
|
| 27 |
|
| 28 |
+
def chunk_text(text, chunk_size=512):
|
| 29 |
+
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
|
| 30 |
|
| 31 |
+
@app.post("/get_embeding")
|
| 32 |
+
async def get_embeding(text):
|
| 33 |
+
chunks = chunk_text(text)
|
| 34 |
+
for chunk in chunks:
|
| 35 |
+
|
| 36 |
+
# Tokenize the input text
|
| 37 |
+
inputs = tokenizer(chunk, return_tensors="pt")
|
| 38 |
+
|
| 39 |
+
# Generate embeddings
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
outputs = model(**inputs)
|
| 42 |
+
|
| 43 |
+
# The embeddings can be found in the 'last_hidden_state'
|
| 44 |
+
embeddings = outputs.last_hidden_state
|
| 45 |
+
|
| 46 |
+
# Optionally, you can average the token embeddings to get a single vector for the sentence
|
| 47 |
+
sentence_embedding = torch.mean(embeddings, dim=1)
|
| 48 |
+
|
| 49 |
+
#print(sentence_embedding)
|
| 50 |
+
|
| 51 |
+
return sentence_embedding
|
| 52 |
|
| 53 |
|
| 54 |
|