File size: 4,682 Bytes
aac1bde
 
 
3aab50a
 
aac1bde
 
 
 
 
 
 
3aab50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aac1bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import mysql.connector
from decimal import Decimal
import pandas as pd
from prophet import Prophet
import math
# Define the connection parameters
host = "159.138.104.192"
user = "storemate_ml"
password = "bTgZd77VpD^o4Ai6Dw9xs9"
database = "lite_version"



def forecast(monthly_sales):
  # Prepare the data for Prophet
  monthly_sales.rename(columns={'transaction_date': 'ds', 'sell_qty': 'y'}, inplace=True)

  # Initialize and fit the Prophet model
  model = Prophet()
  model.fit(monthly_sales)

  # Make a future dataframe for the next month
  future = model.make_future_dataframe(periods=1, freq='M')
  forecast = model.predict(future)

  # Extract the forecasted sales for the next month
  forecasted_sales = forecast[['ds', 'yhat']].tail(2)

  # Combine historical and forecasted data
  combined_sales = pd.concat([monthly_sales, forecasted_sales[-1:]], ignore_index=True)
  original_forecasted_value = combined_sales.tail(1)
  rounded_value = combined_sales.tail(1)

  rounded_value['yhat'] = rounded_value['yhat'].apply(lambda x: max(0, math.ceil(x)))

  return combined_sales,original_forecasted_value,rounded_value

def get_data(b_id,product_name):
  # Create a connection to the MySQL server
  try:
      # Create a connection to the MySQL server
      connection = mysql.connector.connect(
          host=host,
          user=user,
          password=password,
          database=database
      )

      if connection.is_connected():
          print("Connected to MySQL database")

          # Create a cursor object for executing SQL queries
          cursor = connection.cursor()

          # Define the SQL SELECT query
          sql_query = f"""
  SELECT
    `b`.`id` AS `business_id`,
    `b`.`name` AS `business_name`,
    `p`.`name` AS `product_name`,
    `p`.`type` AS `product_type`,
    `c1`.`name` AS `category_name`,
    `pv`.`name` AS `product_variation`,
    `v`.`name` AS `variation_name`,
    `v`.`sub_sku`,
    `c`.`name` AS `customer`,
    `c`.`contact_id`,
    `t`.`id` AS `transaction_id`,
    `t`.`invoice_no`,
    `t`.`transaction_date` AS `transaction_date`,
    (transaction_sell_lines.quantity - transaction_sell_lines.quantity_returned) AS sell_qty,
    `u`.`short_name` AS `unit`,
    transaction_sell_lines.unit_price_inc_tax,
    transaction_sell_lines.unit_price_before_discount
  FROM `transaction_sell_lines`
    INNER JOIN `transactions` AS `t`
      ON `transaction_sell_lines`.`transaction_id` = `t`.`id`
    INNER JOIN `variations` AS `v`
      ON `transaction_sell_lines`.`variation_id` = `v`.`id`
    LEFT JOIN `transaction_sell_lines_purchase_lines` AS `tspl`
      ON `transaction_sell_lines`.`id` = `tspl`.`sell_line_id`
    LEFT JOIN `purchase_lines` AS `pl`
      ON `tspl`.`purchase_line_id` = `pl`.`id`
    INNER JOIN `product_variations` AS `pv`
      ON `v`.`product_variation_id` = `pv`.`id`
    INNER JOIN `contacts` AS `c`
      ON `t`.`contact_id` = `c`.`id`
    INNER JOIN `products` AS `p`
      ON `pv`.`product_id` = `p`.`id`
    LEFT JOIN `business` AS `b`
      ON `p`.`business_id` = `b`.`id`
    LEFT JOIN `categories` AS `c1`
      ON `p`.`category_id` = `c1`.`id`
    LEFT JOIN `tax_rates`
      ON `transaction_sell_lines`.`tax_id` = `tax_rates`.`id`
    LEFT JOIN `units` AS `u`
      ON `p`.`unit_id` = `u`.`id`
    LEFT JOIN `transaction_payments` AS `tp`
      ON `tp`.`transaction_id` = `t`.`id`
    LEFT JOIN `transaction_sell_lines` AS `tsl`
      ON `transaction_sell_lines`.`parent_sell_line_id` = `tsl`.`id`
  WHERE `t`.`type` = 'sell'
  AND `t`.`status` = 'final'
  AND `t`.`business_id` = {b_id}
  AND `p`.`name` = '{product_name}'
  GROUP BY `b`.`id`,
          `transaction_sell_lines`.`id`;
  """

          # Execute the SQL query
          cursor.execute(sql_query)

          # Fetch all the rows as a list of tuples
          results = cursor.fetchall()
          results = [tuple(
              float(val) if isinstance(val, Decimal) else val for val in row
          ) for row in results]

          #print(results)

          # Display the results
          #for row in results:
              #print(row)  # You can process the results as needed

          # Close the cursor and connection
          cursor.close()
          connection.close()

          # Create a DataFrame
          columns = ["business_id","business_name","product_name","product_type","category_name","product_variation","variation_name","sub_sku","customer","contact_id","transaction_id","invoice_no","transaction_date","sell_qty","unit","cost_price","selling_price"]
          df = pd.DataFrame(results, columns=columns)
          return df,"done"

  except mysql.connector.Error as e:
      return e,"error"