File size: 3,344 Bytes
d92c861
 
 
 
 
 
 
 
6122003
07fe890
d92c861
005c659
 
 
 
 
 
 
 
d92c861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6122003
 
 
 
005c659
 
 
 
 
6122003
 
 
 
 
 
 
 
d2e31be
098faa2
07fe890
 
 
 
 
 
 
 
 
 
d92c861
 
 
fed63e7
 
d92c861
6122003
d92c861
fed63e7
 
 
 
 
 
 
 
 
e782b03
 
 
e5e2728
e782b03
e5e2728
d45bf32
e5e2728
e782b03
 
a152f92
7dff946
a152f92
e782b03
 
a152f92
 
e782b03
6122003
2e1190c
a940aa8
7dff946
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.responses import StreamingResponse
from fastapi.responses import FileResponse
from fastapi.middleware.cors import CORSMiddleware
import pandas as pd
from io import StringIO
import os
import uuid
from apscheduler.schedulers.background import BackgroundScheduler

import googletrans
from googletrans import Translator
translator = Translator()
lan = googletrans.LANGUAGES
#print(lan)
keys = list(lan.keys())
vals = list(lan.values())

from pandasai import SmartDataframe
import pandas as pd
from pandasai.llm import OpenAI


secret = os.environ["key"]

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

import base64
from PIL import Image
from io import BytesIO

@app.post("/translator")
async def tra(sentence,lang):
        lang = lang.lower()
        return translator.translate(sentence,dest=keys[vals.index(lang)]).text

def convert_image_to_base64(image_path):
    with Image.open(image_path) as image:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_bytes = buffered.getvalue()
        img_base64 = base64.b64encode(img_bytes)
        img_base64_string = img_base64.decode("utf-8")
    return img_base64_string
    

# Function to call the endpoint
def call_my_endpoint():
    #response = requests.get("http://127.0.0.1:8000/my-endpoint")
    print(f"Endpoint response: {response.json()}")

# Configure the scheduler
scheduler = BackgroundScheduler()
scheduler.add_job(call_my_endpoint, 'interval', seconds=15)  # Call every 30 seconds
scheduler.start()

@app.post("/get_image_for_text")
async def get_image_for_text(email,query,file: UploadFile = File(...)):
        print(file.filename)
        file_name = file.filename
        with open(email+file_name, "wb") as file_object:
            file_object.write(file.file.read())
        uuid1 = uuid.uuid1()
        llm = OpenAI(api_token=secret,save_charts=True)

        # Determine the file type and read accordingly
        if file_name.endswith('.csv'):
            df = pd.read_csv(email+file_name)
        elif file_name.endswith('.xls') or file_name.endswith('.xlsx'):
            df = pd.read_excel(email+file_name)
        else:
            return {"error": "Unsupported file type"}
            
        sdf = SmartDataframe(df, config={"llm": llm})
        sdf.chat(query)  

        code_to_exec = "import matplotlib.pyplot as plt\nimport seaborn as sns\n"
        code_to_exec = code_to_exec + sdf.last_code_generated.replace("dfs[0]","dfs")
        code_to_exec = code_to_exec.replace("exports/charts/temp_chart.png",email+file_name+".png")
        code_to_exec = code_to_exec+f"\nplt.savefig('{email+file_name}.png')"
    
        print(code_to_exec)
        local_vars = {'dfs': df}
        
        try:
            exec(code_to_exec, globals(), local_vars)
            print(email+file_name+".png",df.head())
            
            #return FileResponse(email+file_name+".png")
            base64str = convert_image_to_base64(email+file_name+".png")
            
            return {"id":str(uuid1),"image":base64str}
        except Exception as e:
            print(str(e))
            return "try again"