Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile, HTTPException | |
from fastapi.responses import HTMLResponse | |
from fastapi.responses import StreamingResponse | |
from fastapi.responses import FileResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
from io import StringIO | |
import os | |
import uuid,requests | |
from apscheduler.schedulers.background import BackgroundScheduler | |
# import googletrans | |
# from googletrans import Translator | |
# translator = Translator() | |
# lan = googletrans.LANGUAGES | |
# #print(lan) | |
# keys = list(lan.keys()) | |
# vals = list(lan.values()) | |
from pandasai import SmartDataframe | |
import pandas as pd | |
from pandasai.llm import OpenAI | |
secret = os.environ["key"] | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
import base64 | |
from PIL import Image | |
from io import BytesIO | |
# @app.post("/translator") | |
# async def tra(sentence,lang): | |
# lang = lang.lower() | |
# return translator.translate(sentence,dest=keys[vals.index(lang)]).text | |
def convert_image_to_base64(image_path): | |
with Image.open(image_path) as image: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_bytes = buffered.getvalue() | |
img_base64 = base64.b64encode(img_bytes) | |
img_base64_string = img_base64.decode("utf-8") | |
return img_base64_string | |
# # Function to call the endpoint | |
def call_my_endpoint(): | |
response = requests.post('https://research-project-h4fb.onrender.com/refresh_api') | |
print(f"Endpoint response: {response.json()}") | |
# # Configure the scheduler | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(call_my_endpoint, 'interval', seconds=15) # Call every 30 seconds | |
scheduler.start() | |
async def get_image_for_text(email,query,file: UploadFile = File(...)): | |
print(file.filename) | |
file_name = file.filename | |
with open(email+file_name, "wb") as file_object: | |
file_object.write(file.file.read()) | |
uuid1 = uuid.uuid1() | |
llm = OpenAI(api_token=secret,save_charts=True) | |
# Determine the file type and read accordingly | |
if file_name.endswith('.csv'): | |
df = pd.read_csv(email+file_name) | |
elif file_name.endswith('.xls') or file_name.endswith('.xlsx'): | |
df = pd.read_excel(email+file_name) | |
else: | |
return {"error": "Unsupported file type"} | |
sdf = SmartDataframe(df, config={"llm": llm}) | |
sdf.chat(query) | |
code_to_exec = "import matplotlib.pyplot as plt\nimport seaborn as sns\n" | |
code_to_exec = code_to_exec + sdf.last_code_generated.replace("dfs[0]","dfs") | |
code_to_exec = code_to_exec.replace("exports/charts/temp_chart.png",email+file_name+".png") | |
code_to_exec = code_to_exec+f"\nplt.savefig('{email+file_name}.png')" | |
print(code_to_exec) | |
local_vars = {'dfs': df} | |
try: | |
exec(code_to_exec, globals(), local_vars) | |
print(email+file_name+".png",df.head()) | |
#return FileResponse(email+file_name+".png") | |
base64str = convert_image_to_base64(email+file_name+".png") | |
return {"id":str(uuid1),"image":base64str} | |
except Exception as e: | |
print(str(e)) | |
return "try again" | |