Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import JSONResponse | |
from fastapi.middleware.cors import CORSMiddleware | |
import data_collector as dc | |
import pandas as pd | |
from prophet import Prophet | |
import math | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from datetime import datetime | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
import mysql.connector | |
import json | |
# Define connection parameters | |
host = "68.183.225.237" | |
user = "sm_ml" | |
password = "Fz6/I733" | |
database = "sm_qa_1" | |
def insert_data(b_id,forecast_data):#mysql-connector-python | |
# Establish connection | |
connection = mysql.connector.connect( | |
host=host, | |
user=user, | |
password=password, | |
database=database | |
) | |
# Create a cursor object | |
cursor = connection.cursor() | |
# Convert forecast_data to JSON string | |
forecast_data_json = json.dumps(forecast_data) | |
# SQL command to insert data | |
insert_query = """ | |
INSERT INTO sm_product_count_forecast (bid, forecast_data) | |
VALUES (%s, %s) | |
""" | |
# Execute the SQL command with data | |
cursor.execute(insert_query, (b_id, forecast_data_json)) | |
# Commit the transaction | |
connection.commit() | |
print("Data inserted successfully") | |
# Close the cursor and connection | |
cursor.close() | |
connection.close() | |
def delete_json(b_id): | |
# Establish connection | |
connection = mysql.connector.connect( | |
host=host, | |
user=user, | |
password=password, | |
database=database | |
) | |
# Create a cursor object | |
cursor = connection.cursor() | |
# SQL command to delete a specific record | |
delete_query = """ | |
DELETE FROM sm_product_count_forecast | |
WHERE bid = %s | |
""" | |
# Execute the SQL command with the specified BID | |
cursor.execute(delete_query, (b_id,)) | |
# Commit the transaction | |
connection.commit() | |
print(f"Record with BID {b_id} deleted successfully") | |
# Close the cursor and connection | |
cursor.close() | |
connection.close() | |
def get_data(b_id,page_number,page_size): | |
start = (page_number - 1) * page_size | |
end = start + page_size | |
# Establish connection | |
connection = mysql.connector.connect( | |
host=host, | |
user=user, | |
password=password, | |
database=database | |
) | |
# Create a cursor object | |
cursor = connection.cursor() | |
# SQL command to select data for a specific BID | |
select_query = """ | |
SELECT bid, forecast_data, created_at | |
FROM sm_product_count_forecast | |
WHERE bid = %s | |
""" | |
# Execute the SQL command with the specified BID | |
cursor.execute(select_query, (b_id,)) | |
# Fetch the result | |
row = cursor.fetchone() | |
if row: | |
bid = row[0] | |
forecast_data_json = row[1] | |
created_at = row[2] | |
# Convert JSON string back to Python dictionary | |
forecast_data = json.loads(forecast_data_json) | |
result = { | |
"BID":bid, | |
"created_at":created_at, | |
"forecast_data":forecast_data[start:end] | |
} | |
return result | |
else: | |
return f"plesae genertae forcast for this business id:{b_id}" | |
# Close the cursor and connection | |
cursor.close() | |
connection.close() | |
def forecast(monthly_sales): | |
# Prepare the data for Prophet | |
monthly_sales.rename(columns={'transaction_date': 'ds', 'sell_qty': 'y'}, inplace=True) | |
# Initialize and fit the Prophet model | |
model = Prophet() | |
model.fit(monthly_sales) | |
# Make a future dataframe for the next month | |
future = model.make_future_dataframe(periods=1, freq='M') | |
forecast = model.predict(future) | |
# Extract the forecasted sales for the next month | |
forecasted_sales = forecast[['ds', 'yhat']].tail(2) | |
# Combine historical and forecasted data | |
combined_sales = pd.concat([monthly_sales, forecasted_sales[-1:]], ignore_index=True) | |
original_forecasted_value = combined_sales.tail(1) | |
rounded_value = combined_sales.tail(1) | |
rounded_value['yhat'] = rounded_value['yhat'].apply(lambda x: max(0, math.ceil(x))) | |
return combined_sales, original_forecasted_value, rounded_value | |
def process_product(product_name, data): | |
full_trend = "" | |
try: | |
# Get today's date | |
today = datetime.today().strftime('%Y-%m-%d %H:%M:%S') | |
# Create a new fake transaction with today's date and selling count 0 | |
fake_transaction = data.iloc[0].copy() | |
fake_transaction['transaction_date'] = today | |
fake_transaction['sell_qty'] = 0 | |
# Convert fake_transaction to a DataFrame | |
fake_transaction_df = pd.DataFrame([fake_transaction]) | |
# Concatenate the original DataFrame with the new fake transaction DataFrame | |
data = pd.concat([data, fake_transaction_df], ignore_index=True) | |
# Extract the 'sub_sku' column | |
sub_sku = df['sub_sku'] | |
# Summarize the sales count per month | |
data['transaction_date'] = pd.to_datetime(data['transaction_date']) | |
data.set_index('transaction_date', inplace=True) | |
monthly_sales = data['sell_qty'].resample('M').sum().reset_index() | |
full_trend, forecasted_value, rounded_value = forecast(monthly_sales) | |
rounded_value.columns = ["next_month", "y", "predicted_count"] | |
# Convert to dictionary | |
result_dict = rounded_value.to_dict(orient="records")[0] | |
return { | |
"sub_sku": sub_sku, | |
"Product Name": product_name, | |
"next_month": str(result_dict["next_month"]), | |
"predicted_count": result_dict["predicted_count"] | |
#"full_trend" : str(full_trend) | |
} | |
except Exception as e: | |
return { | |
"sub_sku": sub_sku, | |
"Product Name": product_name, | |
"next_month": str(e), | |
"predicted_count": "not predicted" | |
#"full_trend" : str(full_trend) | |
} | |
async def generate_product_count_prediction(b_id: int): | |
try: | |
# main | |
data, message = dc.get_data(b_id=b_id, product_name="sample") | |
if message == "done": | |
grouped_df = data.groupby('product_name') | |
results = [] | |
with ThreadPoolExecutor() as executor: | |
futures = [executor.submit(process_product, product_name, product_df.copy()) for product_name, product_df in grouped_df] | |
for future in as_completed(futures): | |
results.append(future.result()) | |
try: | |
delete_json(b_id) | |
except: | |
print("no errors") | |
insert_data(b_id,results) | |
return {"status": "success", | |
"b_id":b_id, | |
"message": "Prediction successful and saved to DB", | |
"status_code":200 | |
} | |
except Exception as e: | |
print(str(e)) | |
response_content = { | |
"status": "error", | |
"message": str(e), | |
"data": None, | |
"status_code":500 | |
} | |
return response_content | |
async def get_product_count_prediction_from_DB(b_id: int,page_number :int,page_size :int): | |
response_content = { | |
"status": "done", | |
"message": "data from DB", | |
"data": get_data(b_id,page_number,page_size), | |
"status_code":200 | |
} | |
return response_content | |