Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -160,6 +160,7 @@ def forecast(monthly_sales):
|
|
160 |
|
161 |
def process_product(product_name, data):
|
162 |
full_trend = ""
|
|
|
163 |
try:
|
164 |
# Get today's date
|
165 |
today = datetime.today().strftime('%Y-%m-%d %H:%M:%S')
|
@@ -175,8 +176,6 @@ def process_product(product_name, data):
|
|
175 |
# Concatenate the original DataFrame with the new fake transaction DataFrame
|
176 |
data = pd.concat([data, fake_transaction_df], ignore_index=True)
|
177 |
|
178 |
-
# Extract the 'sub_sku' column
|
179 |
-
sub_sku = df['sub_sku']
|
180 |
|
181 |
# Summarize the sales count per month
|
182 |
data['transaction_date'] = pd.to_datetime(data['transaction_date'])
|
|
|
160 |
|
161 |
def process_product(product_name, data):
|
162 |
full_trend = ""
|
163 |
+
sub_sku = data.loc[0, 'sub_sku']
|
164 |
try:
|
165 |
# Get today's date
|
166 |
today = datetime.today().strftime('%Y-%m-%d %H:%M:%S')
|
|
|
176 |
# Concatenate the original DataFrame with the new fake transaction DataFrame
|
177 |
data = pd.concat([data, fake_transaction_df], ignore_index=True)
|
178 |
|
|
|
|
|
179 |
|
180 |
# Summarize the sales count per month
|
181 |
data['transaction_date'] = pd.to_datetime(data['transaction_date'])
|