from fastapi import FastAPI, HTTPException from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware import data_collector as dc import pandas as pd app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.post("/get_product_count_prediction") async def get_product_count_prediction(b_id: int): try: # main data, message = dc.get_data(b_id=b_id, product_name="sample") if message == "done": grouped_df = data.groupby('product_name') results = [] for product_name, data in grouped_df: # Summarize the sales count per month data['transaction_date'] = pd.to_datetime(data['transaction_date']) data.set_index('transaction_date', inplace=True) monthly_sales = data['sell_qty'].resample('M').sum().reset_index() try: full_trend, forecasted_value, rounded_value = forecast(monthly_sales) rounded_value.columns = ["next_month", "y", "predicted_count"] # Convert to dictionary result_dict = rounded_value.to_dict(orient="records")[0] #print(full_trend, forecasted_value, rounded_value) results.append({ "Product Name" : product_name, "next_month": str(result_dict["next_month"]), "predicted_count": result_dict["predicted_count"] }) except Exception as e: results.append({ "Product Name" : product_name, "next_month": str(e), "predicted_count": "not predicted" }) break response_content = { "status": "success", "message": "Prediction successful", "data": { results } } return JSONResponse(content=response_content, status_code=200) else: raise HTTPException(status_code=400, detail=message) except Exception as e: response_content = { "status": "error", "message": str(e), "data": None } return JSONResponse(content=response_content, status_code=500)