Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,22 +1,21 @@
|
|
1 |
-
|
|
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
|
4 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import numpy as np
|
6 |
-
import joblib
|
7 |
-
|
8 |
-
|
9 |
-
# Load your trained model and encoders
|
10 |
-
xgb_model = joblib.load("model/transexpress_xgb_model.joblib")
|
11 |
-
encoders = joblib.load("model/transexpress_encoders.joblib")
|
12 |
|
13 |
-
# Function to handle unseen labels during encoding
|
14 |
-
def safe_transform(encoder, column):
|
15 |
-
classes = encoder.classes_
|
16 |
-
return [encoder.transform([x])[0] if x in classes else -1 for x in column]
|
17 |
|
18 |
-
# Define FastAPI app
|
19 |
app = FastAPI()
|
|
|
20 |
app.add_middleware(
|
21 |
CORSMiddleware,
|
22 |
allow_origins=["*"],
|
@@ -25,31 +24,198 @@ app.add_middleware(
|
|
25 |
allow_headers=["*"],
|
26 |
)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Endpoint for making predictions
|
29 |
@app.post("/predict")
|
30 |
def predict(
|
31 |
customer_name: str,
|
32 |
customer_address: str,
|
33 |
customer_phone: str,
|
34 |
-
customer_email: str,
|
35 |
weight: int,
|
36 |
cod: int,
|
37 |
pickup_address: str,
|
38 |
-
|
39 |
-
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
input_data = {
|
45 |
'customer_name': customer_name,
|
46 |
'customer_address': customer_address,
|
47 |
'customer_phone_no': customer_phone,
|
48 |
-
'client_email': customer_email,
|
49 |
'weight': weight,
|
50 |
'cod': cod,
|
51 |
'pickup_address':pickup_address,
|
52 |
-
'
|
|
|
53 |
}
|
54 |
input_df = pd.DataFrame([input_data])
|
55 |
|
@@ -65,9 +231,8 @@ def predict(
|
|
65 |
# Output
|
66 |
predicted_status = "Unknown" if pred[0] == -1 else encoders['status_name'].inverse_transform([pred])[0]
|
67 |
probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown"
|
68 |
-
print(input_data,predicted_status,probability)
|
69 |
|
70 |
if predicted_status == "Returned to Client":
|
71 |
probability = 100 - probability
|
72 |
|
73 |
-
return {"Probability": round(probability,2)}
|
|
|
1 |
+
import asyncio
|
2 |
+
from fastapi import FastAPI
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
import requests
|
5 |
import pandas as pd
|
6 |
+
import json
|
7 |
+
import httpx,os,datetime
|
8 |
+
import pandas as pd
|
9 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
10 |
+
from sklearn.preprocessing import LabelEncoder
|
11 |
+
from xgboost import XGBClassifier
|
12 |
+
from sklearn.metrics import accuracy_score, classification_report
|
13 |
+
from joblib import dump, load
|
14 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
app = FastAPI()
|
18 |
+
|
19 |
app.add_middleware(
|
20 |
CORSMiddleware,
|
21 |
allow_origins=["*"],
|
|
|
24 |
allow_headers=["*"],
|
25 |
)
|
26 |
|
27 |
+
|
28 |
+
|
29 |
+
def train_the_model(data):
|
30 |
+
try:
|
31 |
+
new_data = data
|
32 |
+
encoders = load('transexpress_encoders.joblib')
|
33 |
+
xgb_model = load('transexpress_xgb_model.joblib')
|
34 |
+
selected_columns = ['customer_name', 'customer_address', 'customer_phone_no',
|
35 |
+
'weight','cod','pickup_address','client_number','destination_city',
|
36 |
+
'status_name']
|
37 |
+
|
38 |
+
new_data_filled = new_data[selected_columns].fillna('Missing')
|
39 |
+
for col, encoder in encoders.items():
|
40 |
+
if col in new_data_filled.columns:
|
41 |
+
unseen_categories = set(new_data_filled[col]) - set(encoder.classes_)
|
42 |
+
if unseen_categories:
|
43 |
+
for category in unseen_categories:
|
44 |
+
encoder.classes_ = np.append(encoder.classes_, category)
|
45 |
+
new_data_filled[col] = encoder.transform(new_data_filled[col])
|
46 |
+
else:
|
47 |
+
new_data_filled[col] = encoder.transform(new_data_filled[col])
|
48 |
+
X_new = new_data_filled.drop('status_name', axis=1)
|
49 |
+
y_new = new_data_filled['status_name']
|
50 |
+
|
51 |
+
X_train, X_test, y_train, y_test = train_test_split(X_new,y_new, test_size=0.2, random_state=42)
|
52 |
+
|
53 |
+
xgb_model.fit(X_new, y_new)
|
54 |
+
dump(xgb_model,'transexpress_xgb_model.joblib')
|
55 |
+
|
56 |
+
|
57 |
+
y_pred = xgb_model.predict(X_test)
|
58 |
+
accuracy = accuracy_score(y_test, y_pred)
|
59 |
+
classification_rep = classification_report(y_test, y_pred)
|
60 |
+
return accuracy,classification_rep,"Model finetuned with new data."
|
61 |
+
|
62 |
+
|
63 |
+
except:
|
64 |
+
data = data
|
65 |
+
|
66 |
+
# Select columns
|
67 |
+
selected_columns = ['customer_name', 'customer_address', 'customer_phone_no',
|
68 |
+
'weight','cod','pickup_address','client_number','destination_city',
|
69 |
+
'status_name']
|
70 |
+
|
71 |
+
# Handling missing values
|
72 |
+
data_filled = data[selected_columns].fillna('Missing')
|
73 |
+
|
74 |
+
# Encoding categorical variables
|
75 |
+
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
|
76 |
+
for col, encoder in encoders.items():
|
77 |
+
data_filled[col] = encoder.fit_transform(data_filled[col])
|
78 |
+
|
79 |
+
# Splitting the dataset
|
80 |
+
X = data_filled.drop('status_name', axis=1)
|
81 |
+
y = data_filled['status_name']
|
82 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
83 |
+
|
84 |
+
# Setup the hyperparameter grid to search
|
85 |
+
param_grid = {
|
86 |
+
'max_depth': [3, 4, 5],
|
87 |
+
'learning_rate': [0.01, 0.1, 0.4],
|
88 |
+
'n_estimators': [100, 200, 300],
|
89 |
+
'subsample': [0.8, 0.9, 1],
|
90 |
+
'colsample_bytree': [0.3, 0.7]
|
91 |
+
}
|
92 |
+
|
93 |
+
# Initialize the classifier
|
94 |
+
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
|
95 |
+
|
96 |
+
# Setup GridSearchCV
|
97 |
+
grid_search = GridSearchCV(xgb, param_grid, cv=2, n_jobs=-1, scoring='accuracy')
|
98 |
+
|
99 |
+
# Fit the grid search to the data
|
100 |
+
grid_search.fit(X_train, y_train)
|
101 |
+
|
102 |
+
# Get the best parameters
|
103 |
+
best_params = grid_search.best_params_
|
104 |
+
print("Best parameters:", best_params)
|
105 |
+
|
106 |
+
# Train the model with best parameters
|
107 |
+
best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
|
108 |
+
best_xgb.fit(X_train, y_train)
|
109 |
+
|
110 |
+
# Predict on the test set
|
111 |
+
y_pred = best_xgb.predict(X_test)
|
112 |
+
y_pred_proba = best_xgb.predict_proba(X_test)
|
113 |
+
|
114 |
+
# Evaluate the model
|
115 |
+
accuracy = accuracy_score(y_test, y_pred)
|
116 |
+
classification_rep = classification_report(y_test, y_pred)
|
117 |
+
|
118 |
+
# Save the model
|
119 |
+
model_filename = 'transexpress_xgb_model.joblib'
|
120 |
+
dump(best_xgb, model_filename)
|
121 |
+
|
122 |
+
# Save the encoders
|
123 |
+
encoders_filename = 'transexpress_encoders.joblib'
|
124 |
+
dump(encoders, encoders_filename)
|
125 |
+
|
126 |
+
return accuracy,classification_rep,"base Model trained"
|
127 |
+
|
128 |
+
@app.get("/trigger_the_data_fecher")
|
129 |
+
async def your_continuous_function(page: str,paginate: str):
|
130 |
+
print("data fetcher running.....")
|
131 |
+
|
132 |
+
# Initialize an empty DataFrame to store the combined data
|
133 |
+
combined_df = pd.DataFrame()
|
134 |
+
|
135 |
+
# Update the payload for each page
|
136 |
+
url = "https://report.transexpress.lk/api/orders/delivery-success-rate/return-to-client-orders?page={page}&per_page={paginate}"
|
137 |
+
|
138 |
+
payload = {}
|
139 |
+
headers = {
|
140 |
+
'Cookie': 'development_trans_express_session=NaFDGzh5WQCFwiortxA6WEFuBjsAG9GHIQrbKZ8B'
|
141 |
+
}
|
142 |
+
|
143 |
+
response = requests.request("GET", url, headers=headers, data=payload)
|
144 |
+
|
145 |
+
# Sample JSON response
|
146 |
+
json_response = response.json()
|
147 |
+
# Extracting 'data' for conversion
|
148 |
+
data = json_response["return_to_client_orders"]['data']
|
149 |
+
|
150 |
+
data_count = len(data)
|
151 |
+
|
152 |
+
df = pd.json_normalize(data)
|
153 |
+
|
154 |
+
|
155 |
+
df['status_name'] = df['status_name'].replace('Partially Delivered', 'Delivered')
|
156 |
+
df['status_name'] = df['status_name'].replace('Received by Client', 'Returned to Client')
|
157 |
+
|
158 |
+
print("data collected from page : "+page)
|
159 |
+
#data.to_csv("new.csv")
|
160 |
+
|
161 |
+
accuracy,classification_rep,message = train_the_model(df)
|
162 |
+
|
163 |
+
return {"message":message,"page_number":page,"data_count":data_count,"accuracy":accuracy,"classification_rep":classification_rep}
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
@app.get("/get_latest_model_updated_time")
|
169 |
+
async def model_updated_time():
|
170 |
+
try:
|
171 |
+
m_time_encoder = os.path.getmtime('transexpress_encoders.joblib')
|
172 |
+
m_time_model = os.path.getmtime('transexpress_xgb_model.joblib')
|
173 |
+
return {"base model created time ":datetime.datetime.fromtimestamp(m_time_encoder),
|
174 |
+
"last model updated time":datetime.datetime.fromtimestamp(m_time_model)}
|
175 |
+
except:
|
176 |
+
return {"no model found so first trained the model using data fecther"}
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
# Endpoint for making predictions
|
183 |
@app.post("/predict")
|
184 |
def predict(
|
185 |
customer_name: str,
|
186 |
customer_address: str,
|
187 |
customer_phone: str,
|
|
|
188 |
weight: int,
|
189 |
cod: int,
|
190 |
pickup_address: str,
|
191 |
+
client_number:str,
|
192 |
+
destination_city:str
|
193 |
+
):
|
194 |
|
195 |
+
|
196 |
+
try:
|
197 |
+
# Load your trained model and encoders
|
198 |
+
xgb_model = load('transexpress_xgb_model.joblib')
|
199 |
+
encoders = load('transexpress_encoders.joblib')
|
200 |
+
except:
|
201 |
+
return {"no model found so first trained the model using data fecther"}
|
202 |
+
|
203 |
+
|
204 |
+
# Function to handle unseen labels during encoding
|
205 |
+
def safe_transform(encoder, column):
|
206 |
+
classes = encoder.classes_
|
207 |
+
return [encoder.transform([x])[0] if x in classes else -1 for x in column]
|
208 |
+
|
209 |
+
# Convert input data to DataFrame
|
210 |
input_data = {
|
211 |
'customer_name': customer_name,
|
212 |
'customer_address': customer_address,
|
213 |
'customer_phone_no': customer_phone,
|
|
|
214 |
'weight': weight,
|
215 |
'cod': cod,
|
216 |
'pickup_address':pickup_address,
|
217 |
+
'client_number':client_number,
|
218 |
+
'destination_city':destination_city
|
219 |
}
|
220 |
input_df = pd.DataFrame([input_data])
|
221 |
|
|
|
231 |
# Output
|
232 |
predicted_status = "Unknown" if pred[0] == -1 else encoders['status_name'].inverse_transform([pred])[0]
|
233 |
probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown"
|
|
|
234 |
|
235 |
if predicted_status == "Returned to Client":
|
236 |
probability = 100 - probability
|
237 |
|
238 |
+
return {"Probability": round(probability,2)}
|