Arafath10 commited on
Commit
b6cd364
1 Parent(s): 4093b98

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +9 -5
main.py CHANGED
@@ -7,8 +7,8 @@ import joblib
7
 
8
 
9
  # Load your trained model and encoders
10
- xgb_model = joblib.load("model/xgb_model.joblib")
11
- encoders = joblib.load("model/encoders.joblib")
12
 
13
  # Function to handle unseen labels during encoding
14
  def safe_transform(encoder, column):
@@ -33,18 +33,22 @@ def predict(
33
  customer_phone: str,
34
  customer_email: str,
35
  weight: str,
 
36
  pickup_address: str,
37
  destination_city_name: str):
38
  # Convert input data to DataFrame
 
 
 
 
39
  input_data = {
40
  'customer_name': customer_name,
41
  'customer_address': customer_address,
42
  'customer_phone': customer_phone,
43
  'customer_email': customer_email,
44
- 'cod': 1.0,
45
  'weight': float(weight),
46
  'pickup_address':pickup_address,
47
- 'origin_city.name':"origin_city_name",
48
  'destination_city.name':destination_city_name
49
  }
50
  input_df = pd.DataFrame([input_data])
@@ -62,7 +66,7 @@ def predict(
62
  predicted_status = "Unknown" if pred[0] == -1 else encoders['status.name'].inverse_transform([pred])[0]
63
  probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown"
64
 
65
- if predicted_status == "RETURN TO CLIENT":
66
  probability = 100 - probability
67
 
68
  return {"Probability": round(probability,2)}
 
7
 
8
 
9
  # Load your trained model and encoders
10
+ xgb_model = joblib.load("model/transexpress_xgb_model.joblib")
11
+ encoders = joblib.load("model/transexpress_encoders.joblib")
12
 
13
  # Function to handle unseen labels during encoding
14
  def safe_transform(encoder, column):
 
33
  customer_phone: str,
34
  customer_email: str,
35
  weight: str,
36
+ cod:str,
37
  pickup_address: str,
38
  destination_city_name: str):
39
  # Convert input data to DataFrame
40
+
41
+ if destination_city_name=="":
42
+ destination_city_name = 'Missing'
43
+
44
  input_data = {
45
  'customer_name': customer_name,
46
  'customer_address': customer_address,
47
  'customer_phone': customer_phone,
48
  'customer_email': customer_email,
49
+ 'cod': float(cod),
50
  'weight': float(weight),
51
  'pickup_address':pickup_address,
 
52
  'destination_city.name':destination_city_name
53
  }
54
  input_df = pd.DataFrame([input_data])
 
66
  predicted_status = "Unknown" if pred[0] == -1 else encoders['status.name'].inverse_transform([pred])[0]
67
  probability = pred_proba[0][pred[0]] * 100 if pred[0] != -1 else "Unknown"
68
 
69
+ if predicted_status == "Returned to Client":
70
  probability = 100 - probability
71
 
72
  return {"Probability": round(probability,2)}