Update app.py
Browse files
app.py
CHANGED
@@ -3,16 +3,16 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import faiss
|
5 |
|
6 |
-
# Use a
|
7 |
-
model_id = "
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(model_id)
|
10 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=
|
11 |
|
12 |
-
# Embedding model
|
13 |
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
14 |
|
15 |
-
#
|
16 |
doc_texts = []
|
17 |
index = None
|
18 |
|
@@ -62,3 +62,4 @@ with gr.Blocks() as demo:
|
|
62 |
chatbot.submit(ask_bot, inputs=chatbot, outputs=output)
|
63 |
|
64 |
demo.launch()
|
|
|
|
3 |
from sentence_transformers import SentenceTransformer
|
4 |
import faiss
|
5 |
|
6 |
+
# Use a smaller model for testing
|
7 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
10 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512)
|
11 |
|
12 |
+
# Embedding model
|
13 |
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
14 |
|
15 |
+
# Storage
|
16 |
doc_texts = []
|
17 |
index = None
|
18 |
|
|
|
62 |
chatbot.submit(ask_bot, inputs=chatbot, outputs=output)
|
63 |
|
64 |
demo.launch()
|
65 |
+
|