import gradio as gr import tensorflow as tf model = tf.keras.models.load_model('fire_model.h5') def predict_input_image(img): class_names = ['fire_images', 'non_fire_images'] img_4d = img.reshape(-1, 196, 196, 3) prediction = model.predict(img_4d)[0] pred = [1-prediction, prediction] # predlab = classes[pred] confidences = {class_names[i]: float(pred[i]) for i in range(2)} print() return confidences image = gr.inputs.Image(shape=(196, 196)) label = gr.outputs.Label(num_top_classes=1) gr.Interface(fn=predict_input_image, inputs=image, outputs=label,interpretation='default').launch()