Aravindan's picture
Create app.py
7a9f02c
raw
history blame
1.39 kB
import gradio as gr
from tqdm import tqdm
from transformers import pipeline
from IPython.display import YouTubeVideo
from youtube_transcript_api import YouTubeTranscriptApi
def video2Summarizer(link):
youtube_video = link
video_id = youtube_video.split('=')[1]
transcript = YouTubeTranscriptApi.get_transcript(video_id)
result = ""
for i in transcript:
result += ' ' + i['text']
summarizer = pipeline('summarization')
num_iters = int(len(result)/1000)
summarized_text = []
for i in tqdm(range(0, num_iters + 1)):
start = 0
start = i * 1000
end = (i + 1) * 1000
out = summarizer(result[start:end])
out = out[0]
out = out['summary_text']
summarized_text.append(out)
return summarized_text
iface = gr.Interface(fn = video2Summarizer,
inputs = 'text',
outputs = gr.outputs.Textbox(label = "Summarized output"),
title = 'Video To Text Summarizer',
description = 'Just give the url of the YouTube video, then the app will give you the summarized format of the video in 5 to 10 Min, its based on the video length what you have given. Use this example and try to run the same example by clicking that',
examples = [['https://www.youtube.com/watch?v=kEN2Omq9mwk']]
)
iface.launch(inline = False)