Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Streamlit app for extracting text from an image using the General OCR Theory (GOT) 2.0 model
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
|
8 |
+
# Load the pre-trained GOT OCR 2.0 model and tokenizer
|
9 |
+
@st.cache_resource(show_spinner=True)
|
10 |
+
def load_model():
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
12 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
13 |
+
return tokenizer, model.eval().cuda()
|
14 |
+
|
15 |
+
# Streamlit interface
|
16 |
+
st.title("OCR Application using General OCR Theory (GOT) 2.0")
|
17 |
+
st.write("Upload an image to extract text using the GOT OCR 2.0 model.")
|
18 |
+
|
19 |
+
# File upload handler
|
20 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["png", "jpg", "jpeg"])
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
# Display the uploaded image
|
24 |
+
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
|
25 |
+
|
26 |
+
# Load model
|
27 |
+
tokenizer, model = load_model()
|
28 |
+
|
29 |
+
# Load the image into the model
|
30 |
+
with open(uploaded_file.name, 'wb') as f:
|
31 |
+
f.write(uploaded_file.getbuffer())
|
32 |
+
|
33 |
+
image_file = uploaded_file.name
|
34 |
+
|
35 |
+
# Perform OCR
|
36 |
+
with st.spinner("Extracting text..."):
|
37 |
+
res = model.chat(tokenizer, image_file, ocr_type='ocr')
|
38 |
+
|
39 |
+
# Display the result
|
40 |
+
st.write("Extracted Text:")
|
41 |
+
st.text(res)
|