Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,32 +8,35 @@ import io
|
|
8 |
import base64
|
9 |
from torchvision import transforms
|
10 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
# Load the pretrained model
|
13 |
-
@gr.utils.cache
|
14 |
def load_model():
|
15 |
"""Load the pretrained brain segmentation model"""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
model
|
34 |
-
|
35 |
-
|
36 |
-
model = model.to(device)
|
37 |
|
38 |
def preprocess_image(image):
|
39 |
"""Preprocess the input image for the model"""
|
@@ -45,7 +48,12 @@ def preprocess_image(image):
|
|
45 |
image = image.convert('RGB')
|
46 |
|
47 |
# Resize to 256x256 (model's expected input size)
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Convert to tensor and normalize
|
51 |
transform = transforms.Compose([
|
@@ -73,20 +81,24 @@ def create_overlay_visualization(original_img, mask, alpha=0.6):
|
|
73 |
|
74 |
def predict_tumor(image):
|
75 |
"""Main prediction function"""
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
if image is None:
|
80 |
return None, "β οΈ Please upload an image first."
|
81 |
|
82 |
try:
|
|
|
83 |
# Preprocess the image
|
84 |
input_tensor, original_img = preprocess_image(image)
|
85 |
input_tensor = input_tensor.to(device)
|
86 |
|
87 |
# Make prediction
|
88 |
with torch.no_grad():
|
89 |
-
prediction =
|
90 |
# Apply sigmoid to get probability map
|
91 |
prediction = torch.sigmoid(prediction)
|
92 |
# Convert to numpy
|
@@ -109,24 +121,25 @@ def predict_tumor(image):
|
|
109 |
|
110 |
# 4. Side-by-side comparison
|
111 |
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
|
|
112 |
|
113 |
axes[0].imshow(original_array)
|
114 |
-
axes[0].set_title('Original Image', fontsize=
|
115 |
axes[0].axis('off')
|
116 |
|
117 |
axes[1].imshow(mask_colored)
|
118 |
-
axes[1].set_title('Tumor Segmentation', fontsize=
|
119 |
axes[1].axis('off')
|
120 |
|
121 |
axes[2].imshow(overlay)
|
122 |
-
axes[2].set_title('Overlay (Red = Tumor)', fontsize=
|
123 |
axes[2].axis('off')
|
124 |
|
125 |
plt.tight_layout()
|
126 |
|
127 |
# Save plot to bytes
|
128 |
buf = io.BytesIO()
|
129 |
-
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight')
|
130 |
buf.seek(0)
|
131 |
plt.close()
|
132 |
|
@@ -140,38 +153,41 @@ def predict_tumor(image):
|
|
140 |
|
141 |
# Create analysis report
|
142 |
analysis_text = f"""
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
158 |
"""
|
159 |
|
|
|
160 |
return result_image, analysis_text
|
161 |
|
162 |
except Exception as e:
|
163 |
error_msg = f"β Error during prediction: {str(e)}"
|
|
|
164 |
return None, error_msg
|
165 |
|
166 |
def clear_all():
|
167 |
"""Clear all inputs and outputs"""
|
168 |
-
return None, None, ""
|
169 |
|
170 |
# Custom CSS for better styling
|
171 |
css = """
|
172 |
-
|
173 |
-
max-width: 1200px;
|
174 |
-
margin:
|
175 |
}
|
176 |
#title {
|
177 |
text-align: center;
|
@@ -181,21 +197,21 @@ css = """
|
|
181 |
border-radius: 10px;
|
182 |
margin-bottom: 20px;
|
183 |
}
|
184 |
-
#upload-box {
|
185 |
-
border: 2px dashed #ccc;
|
186 |
-
border-radius: 10px;
|
187 |
-
padding: 20px;
|
188 |
-
text-align: center;
|
189 |
-
margin: 10px 0;
|
190 |
-
}
|
191 |
.output-image {
|
192 |
border-radius: 10px;
|
193 |
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
194 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
"""
|
196 |
|
197 |
# Create Gradio interface
|
198 |
-
with gr.Blocks(css=css, title="Brain Tumor Segmentation") as app:
|
199 |
|
200 |
# Header
|
201 |
gr.HTML("""
|
@@ -207,34 +223,34 @@ with gr.Blocks(css=css, title="Brain Tumor Segmentation") as app:
|
|
207 |
|
208 |
with gr.Row():
|
209 |
with gr.Column(scale=1):
|
210 |
-
gr.
|
211 |
|
212 |
# Image input with camera option
|
213 |
image_input = gr.Image(
|
214 |
label="Upload Brain MRI Scan",
|
215 |
type="pil",
|
216 |
-
sources=["upload", "webcam"],
|
217 |
height=300
|
218 |
)
|
219 |
|
220 |
with gr.Row():
|
221 |
-
predict_btn = gr.Button("π Analyze Image", variant="primary",
|
222 |
-
clear_btn = gr.Button("ποΈ Clear
|
223 |
|
224 |
gr.HTML("""
|
225 |
-
<div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 8px;">
|
226 |
<h4>π Instructions:</h4>
|
227 |
-
<ul>
|
228 |
<li>Upload a brain MRI scan image</li>
|
229 |
<li>Supported formats: PNG, JPG, JPEG</li>
|
230 |
<li>For best results, use clear, high-contrast MRI images</li>
|
231 |
-
<li>
|
232 |
</ul>
|
233 |
</div>
|
234 |
""")
|
235 |
|
236 |
with gr.Column(scale=2):
|
237 |
-
gr.
|
238 |
|
239 |
# Output image
|
240 |
output_image = gr.Image(
|
@@ -246,26 +262,31 @@ with gr.Blocks(css=css, title="Brain Tumor Segmentation") as app:
|
|
246 |
|
247 |
# Analysis text
|
248 |
analysis_output = gr.Markdown(
|
249 |
-
|
250 |
-
|
251 |
)
|
252 |
|
253 |
# Add footer with information
|
254 |
gr.HTML("""
|
255 |
-
<div style="margin-top: 30px; padding: 20px; background-color: #f9f9f9; border-radius: 10px;">
|
256 |
-
<
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
269 |
</p>
|
270 |
</div>
|
271 |
""")
|
@@ -274,26 +295,22 @@ with gr.Blocks(css=css, title="Brain Tumor Segmentation") as app:
|
|
274 |
predict_btn.click(
|
275 |
fn=predict_tumor,
|
276 |
inputs=[image_input],
|
277 |
-
outputs=[output_image, analysis_output]
|
|
|
278 |
)
|
279 |
|
280 |
clear_btn.click(
|
281 |
fn=clear_all,
|
|
|
282 |
outputs=[image_input, output_image, analysis_output]
|
283 |
)
|
284 |
|
285 |
-
# Auto-predict when image is uploaded
|
286 |
-
image_input.change(
|
287 |
-
fn=predict_tumor,
|
288 |
-
inputs=[image_input],
|
289 |
-
outputs=[output_image, analysis_output]
|
290 |
-
)
|
291 |
-
|
292 |
# Launch the app
|
293 |
if __name__ == "__main__":
|
|
|
294 |
app.launch(
|
295 |
-
share=True,
|
296 |
server_name="0.0.0.0",
|
297 |
server_port=7860,
|
298 |
-
show_error=True
|
|
|
299 |
)
|
|
|
8 |
import base64
|
9 |
from torchvision import transforms
|
10 |
import torch.nn.functional as F
|
11 |
+
import warnings
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
# Global variable to store model
|
15 |
+
model = None
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
|
|
|
|
18 |
def load_model():
|
19 |
"""Load the pretrained brain segmentation model"""
|
20 |
+
global model
|
21 |
+
if model is None:
|
22 |
+
try:
|
23 |
+
print("Loading brain segmentation model...")
|
24 |
+
model = torch.hub.load(
|
25 |
+
'mateuszbuda/brain-segmentation-pytorch',
|
26 |
+
'unet',
|
27 |
+
in_channels=3,
|
28 |
+
out_channels=1,
|
29 |
+
init_features=32,
|
30 |
+
pretrained=True,
|
31 |
+
force_reload=False
|
32 |
+
)
|
33 |
+
model.eval()
|
34 |
+
model = model.to(device)
|
35 |
+
print("Model loaded successfully!")
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error loading model: {e}")
|
38 |
+
model = None
|
39 |
+
return model
|
|
|
40 |
|
41 |
def preprocess_image(image):
|
42 |
"""Preprocess the input image for the model"""
|
|
|
48 |
image = image.convert('RGB')
|
49 |
|
50 |
# Resize to 256x256 (model's expected input size)
|
51 |
+
# Use LANCZOS if available, otherwise use BILINEAR
|
52 |
+
try:
|
53 |
+
image = image.resize((256, 256), Image.Resampling.LANCZOS)
|
54 |
+
except AttributeError:
|
55 |
+
# For older PIL versions
|
56 |
+
image = image.resize((256, 256), Image.LANCZOS)
|
57 |
|
58 |
# Convert to tensor and normalize
|
59 |
transform = transforms.Compose([
|
|
|
81 |
|
82 |
def predict_tumor(image):
|
83 |
"""Main prediction function"""
|
84 |
+
# Load model if not loaded
|
85 |
+
current_model = load_model()
|
86 |
+
|
87 |
+
if current_model is None:
|
88 |
+
return None, "β Model failed to load. Please try again later."
|
89 |
|
90 |
if image is None:
|
91 |
return None, "β οΈ Please upload an image first."
|
92 |
|
93 |
try:
|
94 |
+
print("Processing image...")
|
95 |
# Preprocess the image
|
96 |
input_tensor, original_img = preprocess_image(image)
|
97 |
input_tensor = input_tensor.to(device)
|
98 |
|
99 |
# Make prediction
|
100 |
with torch.no_grad():
|
101 |
+
prediction = current_model(input_tensor)
|
102 |
# Apply sigmoid to get probability map
|
103 |
prediction = torch.sigmoid(prediction)
|
104 |
# Convert to numpy
|
|
|
121 |
|
122 |
# 4. Side-by-side comparison
|
123 |
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
124 |
+
fig.suptitle('Brain Tumor Segmentation Results', fontsize=16, fontweight='bold')
|
125 |
|
126 |
axes[0].imshow(original_array)
|
127 |
+
axes[0].set_title('Original Image', fontsize=12, fontweight='bold')
|
128 |
axes[0].axis('off')
|
129 |
|
130 |
axes[1].imshow(mask_colored)
|
131 |
+
axes[1].set_title('Tumor Segmentation', fontsize=12, fontweight='bold')
|
132 |
axes[1].axis('off')
|
133 |
|
134 |
axes[2].imshow(overlay)
|
135 |
+
axes[2].set_title('Overlay (Red = Tumor)', fontsize=12, fontweight='bold')
|
136 |
axes[2].axis('off')
|
137 |
|
138 |
plt.tight_layout()
|
139 |
|
140 |
# Save plot to bytes
|
141 |
buf = io.BytesIO()
|
142 |
+
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight', facecolor='white')
|
143 |
buf.seek(0)
|
144 |
plt.close()
|
145 |
|
|
|
153 |
|
154 |
# Create analysis report
|
155 |
analysis_text = f"""
|
156 |
+
## π§ Brain Tumor Segmentation Analysis
|
157 |
+
|
158 |
+
**π Tumor Statistics:**
|
159 |
+
- Total pixels analyzed: {total_pixels:,}
|
160 |
+
- Tumor pixels detected: {tumor_pixels:,}
|
161 |
+
- Tumor area percentage: {tumor_percentage:.2f}%
|
162 |
+
|
163 |
+
**π― Model Information:**
|
164 |
+
- Model: Pre-trained U-Net for brain segmentation
|
165 |
+
- Input resolution: 256Γ256 pixels
|
166 |
+
- Detection threshold: {threshold}
|
167 |
+
- Device: {device.type.upper()}
|
168 |
+
|
169 |
+
**β οΈ Medical Disclaimer:**
|
170 |
+
This is an AI tool for research and educational purposes only.
|
171 |
+
Always consult qualified medical professionals for diagnosis.
|
172 |
"""
|
173 |
|
174 |
+
print("Processing completed successfully!")
|
175 |
return result_image, analysis_text
|
176 |
|
177 |
except Exception as e:
|
178 |
error_msg = f"β Error during prediction: {str(e)}"
|
179 |
+
print(error_msg)
|
180 |
return None, error_msg
|
181 |
|
182 |
def clear_all():
|
183 |
"""Clear all inputs and outputs"""
|
184 |
+
return None, None, "Upload an image and click 'Analyze Image' to see results."
|
185 |
|
186 |
# Custom CSS for better styling
|
187 |
css = """
|
188 |
+
.gradio-container {
|
189 |
+
max-width: 1200px !important;
|
190 |
+
margin: auto !important;
|
191 |
}
|
192 |
#title {
|
193 |
text-align: center;
|
|
|
197 |
border-radius: 10px;
|
198 |
margin-bottom: 20px;
|
199 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
.output-image {
|
201 |
border-radius: 10px;
|
202 |
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
203 |
}
|
204 |
+
button {
|
205 |
+
border-radius: 8px;
|
206 |
+
font-weight: 500;
|
207 |
+
}
|
208 |
+
.progress-bar {
|
209 |
+
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
210 |
+
}
|
211 |
"""
|
212 |
|
213 |
# Create Gradio interface
|
214 |
+
with gr.Blocks(css=css, title="π§ Brain Tumor Segmentation AI", theme=gr.themes.Soft()) as app:
|
215 |
|
216 |
# Header
|
217 |
gr.HTML("""
|
|
|
223 |
|
224 |
with gr.Row():
|
225 |
with gr.Column(scale=1):
|
226 |
+
gr.Markdown("### π€ Input Image")
|
227 |
|
228 |
# Image input with camera option
|
229 |
image_input = gr.Image(
|
230 |
label="Upload Brain MRI Scan",
|
231 |
type="pil",
|
232 |
+
sources=["upload", "webcam"],
|
233 |
height=300
|
234 |
)
|
235 |
|
236 |
with gr.Row():
|
237 |
+
predict_btn = gr.Button("π Analyze Image", variant="primary", scale=2)
|
238 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary", scale=1)
|
239 |
|
240 |
gr.HTML("""
|
241 |
+
<div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 8px; border-left: 4px solid #667eea;">
|
242 |
<h4>π Instructions:</h4>
|
243 |
+
<ul style="margin: 10px 0; padding-left: 20px;">
|
244 |
<li>Upload a brain MRI scan image</li>
|
245 |
<li>Supported formats: PNG, JPG, JPEG</li>
|
246 |
<li>For best results, use clear, high-contrast MRI images</li>
|
247 |
+
<li>Camera option available for mobile devices</li>
|
248 |
</ul>
|
249 |
</div>
|
250 |
""")
|
251 |
|
252 |
with gr.Column(scale=2):
|
253 |
+
gr.Markdown("### π Segmentation Results")
|
254 |
|
255 |
# Output image
|
256 |
output_image = gr.Image(
|
|
|
262 |
|
263 |
# Analysis text
|
264 |
analysis_output = gr.Markdown(
|
265 |
+
value="Upload an image and click 'Analyze Image' to see results.",
|
266 |
+
elem_id="analysis"
|
267 |
)
|
268 |
|
269 |
# Add footer with information
|
270 |
gr.HTML("""
|
271 |
+
<div style="margin-top: 30px; padding: 20px; background-color: #f9f9f9; border-radius: 10px; border: 1px solid #e1e4e8;">
|
272 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
|
273 |
+
<div>
|
274 |
+
<h4 style="color: #667eea; margin-bottom: 10px;">π¬ About This Tool</h4>
|
275 |
+
<p><strong>Model:</strong> Pre-trained U-Net for brain segmentation</p>
|
276 |
+
<p><strong>Technology:</strong> PyTorch + Deep Learning</p>
|
277 |
+
<p><strong>Purpose:</strong> Research & Educational Use</p>
|
278 |
+
</div>
|
279 |
+
<div>
|
280 |
+
<h4 style="color: #d73027; margin-bottom: 10px;">β οΈ Medical Disclaimer</h4>
|
281 |
+
<p style="color: #d73027; font-weight: 500;">
|
282 |
+
This AI tool is for research and educational purposes only.<br>
|
283 |
+
<strong>NOT for medical diagnosis.</strong> Always consult healthcare professionals.
|
284 |
+
</p>
|
285 |
+
</div>
|
286 |
+
</div>
|
287 |
+
<hr style="margin: 20px 0; border: none; border-top: 1px solid #e1e4e8;">
|
288 |
+
<p style="text-align: center; color: #666; margin: 10px 0;">
|
289 |
+
Made with β€οΈ using Gradio β’ Powered by PyTorch β’ Hosted on π€ Hugging Face Spaces
|
290 |
</p>
|
291 |
</div>
|
292 |
""")
|
|
|
295 |
predict_btn.click(
|
296 |
fn=predict_tumor,
|
297 |
inputs=[image_input],
|
298 |
+
outputs=[output_image, analysis_output],
|
299 |
+
show_progress=True
|
300 |
)
|
301 |
|
302 |
clear_btn.click(
|
303 |
fn=clear_all,
|
304 |
+
inputs=[],
|
305 |
outputs=[image_input, output_image, analysis_output]
|
306 |
)
|
307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
# Launch the app
|
309 |
if __name__ == "__main__":
|
310 |
+
print("Starting Brain Tumor Segmentation App...")
|
311 |
app.launch(
|
|
|
312 |
server_name="0.0.0.0",
|
313 |
server_port=7860,
|
314 |
+
show_error=True,
|
315 |
+
share=False
|
316 |
)
|