Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,416 +1,151 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import torch.nn as nn
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
from PIL import Image
|
7 |
import matplotlib.pyplot as plt
|
8 |
import io
|
|
|
9 |
from torchvision import transforms
|
10 |
-
import torchvision.models as models
|
11 |
-
from torchvision.models import detection
|
12 |
-
import warnings
|
13 |
-
warnings.filterwarnings("ignore")
|
14 |
|
15 |
-
# Global variables
|
16 |
-
model = None
|
17 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
self.model = None
|
22 |
-
self.device = device
|
23 |
-
|
24 |
-
def load_maskrcnn_model(self):
|
25 |
-
"""Load Mask R-CNN for tumor instance segmentation"""
|
26 |
-
try:
|
27 |
-
print("π Loading Mask R-CNN for brain tumor detection...")
|
28 |
-
|
29 |
-
# Use pretrained Mask R-CNN and fine-tune for brain tumors
|
30 |
-
self.model = detection.maskrcnn_resnet50_fpn(pretrained=True)
|
31 |
-
|
32 |
-
# Modify for brain tumor segmentation (2 classes: background, tumor)
|
33 |
-
num_classes = 2
|
34 |
-
in_features = self.model.roi_heads.box_predictor.cls_score.in_features
|
35 |
-
self.model.roi_heads.box_predictor = detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)
|
36 |
-
|
37 |
-
# Modify mask predictor
|
38 |
-
in_features_mask = self.model.roi_heads.mask_predictor.conv5_mask.in_channels
|
39 |
-
hidden_layer = 256
|
40 |
-
self.model.roi_heads.mask_predictor = detection.mask_rcnn.MaskRCNNPredictor(
|
41 |
-
in_features_mask, hidden_layer, num_classes
|
42 |
-
)
|
43 |
-
|
44 |
-
self.model.eval()
|
45 |
-
self.model = self.model.to(self.device)
|
46 |
-
print("β
Model loaded successfully!")
|
47 |
-
return True
|
48 |
-
|
49 |
-
except Exception as e:
|
50 |
-
print(f"β Error loading model: {e}")
|
51 |
-
return False
|
52 |
-
|
53 |
-
def load_robust_model():
|
54 |
-
"""Load the most robust brain tumor detection model"""
|
55 |
global model
|
56 |
if model is None:
|
57 |
-
|
58 |
-
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
model = torch.hub.load(
|
68 |
-
'mateuszbuda/brain-segmentation-pytorch',
|
69 |
-
'unet',
|
70 |
-
in_channels=3,
|
71 |
-
out_channels=1,
|
72 |
-
init_features=32,
|
73 |
-
pretrained=True,
|
74 |
-
force_reload=False
|
75 |
-
)
|
76 |
-
model.eval()
|
77 |
-
model = model.to(device)
|
78 |
-
print("β
Fallback model loaded!")
|
79 |
-
except:
|
80 |
-
model = None
|
81 |
-
print("β All models failed to load!")
|
82 |
-
|
83 |
return model
|
84 |
|
85 |
-
def
|
86 |
-
|
87 |
-
if isinstance(image, Image.Image):
|
88 |
-
image_np = np.array(image)
|
89 |
-
else:
|
90 |
-
image_np = image
|
91 |
-
|
92 |
-
# Convert to grayscale for processing
|
93 |
-
if len(image_np.shape) == 3:
|
94 |
-
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
|
95 |
-
else:
|
96 |
-
gray = image_np
|
97 |
-
|
98 |
-
# Multi-step enhancement
|
99 |
-
# 1. CLAHE for contrast
|
100 |
-
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
101 |
-
enhanced = clahe.apply(gray)
|
102 |
-
|
103 |
-
# 2. Gaussian blur for noise reduction
|
104 |
-
denoised = cv2.GaussianBlur(enhanced, (3,3), 0)
|
105 |
|
106 |
-
# 3. Histogram equalization
|
107 |
-
hist_eq = cv2.equalizeHist(denoised)
|
108 |
-
|
109 |
-
# 4. Normalize intensity
|
110 |
-
normalized = cv2.normalize(hist_eq, None, 0, 255, cv2.NORM_MINMAX)
|
111 |
-
|
112 |
-
# 5. Edge enhancement
|
113 |
-
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
114 |
-
sharpened = cv2.filter2D(normalized, -1, kernel)
|
115 |
-
|
116 |
-
# Convert back to RGB
|
117 |
-
enhanced_rgb = cv2.cvtColor(sharpened, cv2.COLOR_GRAY2RGB)
|
118 |
-
|
119 |
-
return enhanced_rgb
|
120 |
-
|
121 |
-
def preprocess_for_detection(image):
|
122 |
-
"""Preprocess image for comprehensive tumor detection"""
|
123 |
-
# Enhance the image
|
124 |
-
enhanced_image = enhance_mri_image(image)
|
125 |
-
enhanced_pil = Image.fromarray(enhanced_image)
|
126 |
-
|
127 |
-
# Resize to standard size
|
128 |
-
enhanced_pil = enhanced_pil.resize((512, 512), Image.LANCZOS)
|
129 |
-
|
130 |
-
# Convert to tensor with proper normalization
|
131 |
-
transform = transforms.Compose([
|
132 |
-
transforms.ToTensor(),
|
133 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
134 |
-
])
|
135 |
-
|
136 |
-
image_tensor = transform(enhanced_pil).unsqueeze(0)
|
137 |
-
return image_tensor, enhanced_pil
|
138 |
-
|
139 |
-
def detect_all_tumors(image):
|
140 |
-
"""Comprehensive tumor detection and segmentation"""
|
141 |
-
current_model = load_robust_model()
|
142 |
-
|
143 |
-
if current_model is None:
|
144 |
-
return None, "β Model failed to load. Please check your setup."
|
145 |
-
|
146 |
if image is None:
|
147 |
-
return None, "β οΈ Please upload
|
148 |
-
|
149 |
try:
|
150 |
-
|
|
|
151 |
|
152 |
-
#
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
157 |
with torch.no_grad():
|
158 |
-
|
159 |
-
|
160 |
-
# Process Mask R-CNN output
|
161 |
-
boxes = predictions[0]['boxes'].cpu().numpy()
|
162 |
-
masks = predictions[0]['masks'].cpu().numpy()
|
163 |
-
scores = predictions[0]['scores'].cpu().numpy()
|
164 |
-
|
165 |
-
# Filter high-confidence detections
|
166 |
-
threshold = 0.5
|
167 |
-
high_conf_mask = scores > threshold
|
168 |
-
final_masks = masks[high_conf_mask]
|
169 |
-
final_boxes = boxes[high_conf_mask]
|
170 |
-
final_scores = scores[high_conf_mask]
|
171 |
-
|
172 |
-
print(f"π― Detected {len(final_masks)} tumor(s) with confidence > {threshold}")
|
173 |
-
|
174 |
-
else: # U-Net
|
175 |
-
prediction = current_model(input_tensor)
|
176 |
-
prediction = torch.sigmoid(prediction)
|
177 |
-
prediction = prediction.squeeze().cpu().numpy()
|
178 |
-
|
179 |
-
# Create binary mask
|
180 |
-
binary_mask = (prediction > 0.3).astype(np.uint8)
|
181 |
-
|
182 |
-
# Find connected components (separate tumors)
|
183 |
-
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask)
|
184 |
-
final_masks = []
|
185 |
-
for i in range(1, num_labels):
|
186 |
-
if stats[i, cv2.CC_STAT_AREA] > 100: # Filter small regions
|
187 |
-
tumor_mask = (labels == i).astype(np.uint8)
|
188 |
-
final_masks.append(tumor_mask)
|
189 |
-
|
190 |
-
print(f"π― Detected {len(final_masks)} separate tumor region(s)")
|
191 |
-
|
192 |
-
# Create comprehensive visualization
|
193 |
-
original_array = np.array(image.resize((512, 512)))
|
194 |
-
processed_array = np.array(processed_img)
|
195 |
|
196 |
-
# Create
|
197 |
-
fig, axes = plt.subplots(
|
198 |
-
fig.suptitle('π§ Comprehensive Brain Tumor Detection', fontsize=20, fontweight='bold')
|
199 |
-
|
200 |
-
# Row 1: Original, Enhanced, All Tumors
|
201 |
-
axes[0,0].imshow(original_array)
|
202 |
-
axes[0,0].set_title('Original MRI', fontsize=14, fontweight='bold')
|
203 |
-
axes[0,0].axis('off')
|
204 |
-
|
205 |
-
axes[0,1].imshow(processed_array)
|
206 |
-
axes[0,1].set_title('Enhanced Image', fontsize=14, fontweight='bold')
|
207 |
-
axes[0,1].axis('off')
|
208 |
-
|
209 |
-
# Combined tumor overlay
|
210 |
-
combined_overlay = original_array.copy()
|
211 |
-
colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)] # Different colors for different tumors
|
212 |
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
-
axes[0,2].imshow(combined_overlay)
|
224 |
-
axes[0,2].set_title(f'All Tumors Detected ({len(final_masks)})', fontsize=14, fontweight='bold')
|
225 |
-
axes[0,2].axis('off')
|
226 |
-
|
227 |
-
# Row 2: Individual tumor analysis
|
228 |
-
if len(final_masks) >= 1:
|
229 |
-
mask1 = final_masks[0]
|
230 |
-
if len(mask1.shape) == 3:
|
231 |
-
mask1 = mask1[0]
|
232 |
-
mask1_colored = np.zeros((512, 512, 3), dtype=np.uint8)
|
233 |
-
mask1_resized = cv2.resize(mask1, (512, 512))
|
234 |
-
mask1_colored[:, :, 0] = mask1_resized * 255
|
235 |
-
axes[1,0].imshow(mask1_colored)
|
236 |
-
axes[1,0].set_title('Tumor Region 1', fontsize=14)
|
237 |
-
axes[1,0].axis('off')
|
238 |
-
else:
|
239 |
-
axes[1,0].text(0.5, 0.5, 'No Tumor\nDetected', ha='center', va='center', fontsize=16)
|
240 |
-
axes[1,0].axis('off')
|
241 |
-
|
242 |
-
if len(final_masks) >= 2:
|
243 |
-
mask2 = final_masks[1]
|
244 |
-
if len(mask2.shape) == 3:
|
245 |
-
mask2 = mask2[0]
|
246 |
-
mask2_colored = np.zeros((512, 512, 3), dtype=np.uint8)
|
247 |
-
mask2_resized = cv2.resize(mask2, (512, 512))
|
248 |
-
mask2_colored[:, :, 1] = mask2_resized * 255
|
249 |
-
axes[1,1].imshow(mask2_colored)
|
250 |
-
axes[1,1].set_title('Tumor Region 2', fontsize=14)
|
251 |
-
axes[1,1].axis('off')
|
252 |
-
else:
|
253 |
-
axes[1,1].text(0.5, 0.5, 'Single Tumor\nOnly', ha='center', va='center', fontsize=16)
|
254 |
-
axes[1,1].axis('off')
|
255 |
-
|
256 |
-
# Statistics pie chart
|
257 |
-
if len(final_masks) > 0:
|
258 |
-
total_pixels = 512 * 512
|
259 |
-
tumor_pixels = sum([np.sum(cv2.resize(mask[0] if len(mask.shape) == 3 else mask, (512, 512))) for mask in final_masks])
|
260 |
-
healthy_pixels = total_pixels - tumor_pixels
|
261 |
-
|
262 |
-
if tumor_pixels > 0:
|
263 |
-
axes[1,2].pie([healthy_pixels, tumor_pixels],
|
264 |
-
labels=['Healthy', 'Tumor'],
|
265 |
-
colors=['lightblue', 'red'],
|
266 |
-
autopct='%1.1f%%',
|
267 |
-
startangle=90)
|
268 |
-
axes[1,2].set_title('Tissue Distribution', fontsize=14, fontweight='bold')
|
269 |
-
else:
|
270 |
-
axes[1,2].text(0.5, 0.5, 'No Tumors\nDetected', ha='center', va='center', fontsize=16)
|
271 |
-
axes[1,2].axis('off')
|
272 |
-
else:
|
273 |
-
axes[1,2].text(0.5, 0.5, 'Healthy\nBrain', ha='center', va='center', fontsize=16, color='green')
|
274 |
-
axes[1,2].axis('off')
|
275 |
-
|
276 |
plt.tight_layout()
|
277 |
-
|
278 |
-
# Save
|
279 |
buf = io.BytesIO()
|
280 |
-
plt.savefig(buf, format='png',
|
281 |
buf.seek(0)
|
282 |
plt.close()
|
283 |
-
|
284 |
result_image = Image.open(buf)
|
285 |
-
|
286 |
-
# Calculate comprehensive statistics
|
287 |
-
total_tumor_pixels = 0
|
288 |
-
tumor_areas = []
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
mask_resized = cv2.resize(mask, (512, 512))
|
295 |
-
pixels = np.sum(mask_resized > 0.5)
|
296 |
-
total_tumor_pixels += pixels
|
297 |
-
tumor_areas.append(pixels)
|
298 |
-
|
299 |
-
total_percentage = (total_tumor_pixels / (512*512)) * 100
|
300 |
-
|
301 |
-
# Comprehensive analysis report
|
302 |
-
analysis_text = f"""
|
303 |
-
## π§ Comprehensive Brain Tumor Analysis
|
304 |
-
|
305 |
-
### π― Detection Summary:
|
306 |
-
- **Tumors Detected**: **{len(final_masks)} tumor region(s)**
|
307 |
-
- **Total Tumor Area**: {total_tumor_pixels:,} pixels ({total_percentage:.2f}%)
|
308 |
-
- **Detection Model**: {'Mask R-CNN Instance Segmentation' if hasattr(current_model, 'roi_heads') else 'Enhanced U-Net Segmentation'}
|
309 |
-
|
310 |
-
### π Individual Tumor Analysis:
|
311 |
-
"""
|
312 |
|
313 |
-
|
314 |
-
|
315 |
-
analysis_text += f"- **Tumor {i+1}**: {area:,} pixels ({percentage:.2f}%)\n"
|
316 |
-
|
317 |
-
analysis_text += f"""
|
318 |
-
|
319 |
-
### π¬ Technical Details:
|
320 |
-
- **Enhancement**: CLAHE + Histogram Equalization + Edge Enhancement
|
321 |
-
- **Resolution**: 512Γ512 pixels for high-precision detection
|
322 |
-
- **Detection Threshold**: Multiple confidence levels
|
323 |
-
- **Processing**: GPU-accelerated inference
|
324 |
|
325 |
-
|
326 |
-
-
|
327 |
-
-
|
328 |
-
- **Recommendation**: {'Immediate specialist consultation' if total_percentage > 2.0 else 'Medical evaluation advised' if total_percentage > 0 else 'Regular monitoring'}
|
329 |
|
330 |
-
|
331 |
-
|
|
|
|
|
332 |
"""
|
333 |
-
|
334 |
-
print("β
Comprehensive tumor analysis completed!")
|
335 |
return result_image, analysis_text
|
336 |
-
|
337 |
except Exception as e:
|
338 |
-
|
339 |
-
print(error_msg)
|
340 |
-
return None, error_msg
|
341 |
|
342 |
def clear_all():
|
343 |
-
return None, None, "Upload
|
344 |
-
|
345 |
-
# Enhanced CSS
|
346 |
-
css = """
|
347 |
-
.gradio-container {
|
348 |
-
max-width: 1400px !important;
|
349 |
-
margin: auto !important;
|
350 |
-
}
|
351 |
-
#title {
|
352 |
-
text-align: center;
|
353 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
354 |
-
color: white;
|
355 |
-
padding: 30px;
|
356 |
-
border-radius: 15px;
|
357 |
-
margin-bottom: 30px;
|
358 |
-
box-shadow: 0 10px 20px rgba(0,0,0,0.1);
|
359 |
-
}
|
360 |
-
"""
|
361 |
-
|
362 |
-
# Create comprehensive Gradio interface
|
363 |
-
with gr.Blocks(css=css, title="π§ Comprehensive Brain Tumor Detection") as app:
|
364 |
|
|
|
|
|
|
|
365 |
gr.HTML("""
|
366 |
-
<div
|
367 |
-
<h1>π§
|
368 |
-
<p
|
369 |
-
Detects ALL Tumors β’ Instance Segmentation β’ Multi-Tumor Analysis
|
370 |
-
</p>
|
371 |
-
<p style="font-size: 14px; margin-top: 10px; opacity: 0.9;">
|
372 |
-
Powered by Mask R-CNN + Enhanced Image Processing
|
373 |
-
</p>
|
374 |
</div>
|
375 |
""")
|
376 |
-
|
377 |
with gr.Row():
|
378 |
with gr.Column(scale=1):
|
379 |
-
gr.Markdown("### π€ Upload Brain MRI")
|
380 |
-
|
381 |
image_input = gr.Image(
|
382 |
-
label="Brain MRI
|
383 |
type="pil",
|
384 |
sources=["upload", "webcam"],
|
385 |
-
height=
|
386 |
)
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
with gr.Column(scale=2):
|
393 |
-
gr.Markdown("### π Comprehensive Analysis")
|
394 |
-
|
395 |
output_image = gr.Image(
|
396 |
-
label="
|
397 |
type="pil",
|
398 |
-
height=
|
399 |
)
|
400 |
-
|
401 |
analysis_output = gr.Markdown(
|
402 |
-
value="Upload
|
403 |
-
elem_id="analysis"
|
404 |
)
|
405 |
-
|
406 |
# Event handlers
|
407 |
analyze_btn.click(
|
408 |
-
fn=
|
409 |
inputs=[image_input],
|
410 |
-
outputs=[output_image, analysis_output]
|
411 |
-
show_progress=True
|
412 |
)
|
413 |
-
|
414 |
clear_btn.click(
|
415 |
fn=clear_all,
|
416 |
inputs=[],
|
@@ -418,10 +153,4 @@ with gr.Blocks(css=css, title="π§ Comprehensive Brain Tumor Detection") as app
|
|
418 |
)
|
419 |
|
420 |
if __name__ == "__main__":
|
421 |
-
|
422 |
-
app.launch(
|
423 |
-
server_name="0.0.0.0",
|
424 |
-
server_port=7860,
|
425 |
-
show_error=True,
|
426 |
-
share=False
|
427 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from PIL import Image
|
6 |
import matplotlib.pyplot as plt
|
7 |
import io
|
8 |
+
import segmentation_models_pytorch as smp
|
9 |
from torchvision import transforms
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
11 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
model = None
|
13 |
|
14 |
+
def load_model():
|
15 |
+
"""Load the most popular pretrained model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
global model
|
17 |
if model is None:
|
18 |
+
# Most used: UNet with EfficientNet-B4 backbone
|
19 |
+
model = smp.Unet(
|
20 |
+
encoder_name="efficientnet-b4", # Most popular backbone
|
21 |
+
encoder_weights="imagenet", # Use ImageNet pretrained weights
|
22 |
+
in_channels=3, # Input channels
|
23 |
+
classes=1, # Output classes
|
24 |
+
)
|
25 |
+
model = model.to(device)
|
26 |
+
model.eval()
|
27 |
+
print("β
Model loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return model
|
29 |
|
30 |
+
def predict_tumor(image):
|
31 |
+
current_model = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
if image is None:
|
34 |
+
return None, "β οΈ Please upload an image first."
|
35 |
+
|
36 |
try:
|
37 |
+
# Simple preprocessing
|
38 |
+
image = image.convert('RGB').resize((256, 256))
|
39 |
|
40 |
+
# Convert to tensor
|
41 |
+
transform = transforms.Compose([
|
42 |
+
transforms.ToTensor(),
|
43 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
44 |
+
])
|
45 |
+
|
46 |
+
input_tensor = transform(image).unsqueeze(0).to(device)
|
47 |
+
|
48 |
+
# Predict
|
49 |
with torch.no_grad():
|
50 |
+
prediction = torch.sigmoid(current_model(input_tensor))
|
51 |
+
mask = (prediction > 0.5).float().squeeze().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Create visualization
|
54 |
+
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Original
|
57 |
+
axes[0].imshow(image)
|
58 |
+
axes[0].set_title('Original Image')
|
59 |
+
axes[0].axis('off')
|
60 |
+
|
61 |
+
# Mask
|
62 |
+
axes[1].imshow(mask, cmap='hot')
|
63 |
+
axes[1].set_title('Tumor Prediction')
|
64 |
+
axes[1].axis('off')
|
65 |
+
|
66 |
+
# Overlay
|
67 |
+
overlay = np.array(image)
|
68 |
+
overlay[mask > 0.5] = [255, 0, 0] # Red for tumor
|
69 |
+
axes[2].imshow(overlay)
|
70 |
+
axes[2].set_title('Overlay')
|
71 |
+
axes[2].axis('off')
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
plt.tight_layout()
|
74 |
+
|
75 |
+
# Save to image
|
76 |
buf = io.BytesIO()
|
77 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
78 |
buf.seek(0)
|
79 |
plt.close()
|
80 |
+
|
81 |
result_image = Image.open(buf)
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Stats
|
84 |
+
tumor_pixels = np.sum(mask > 0.5)
|
85 |
+
total_pixels = mask.size
|
86 |
+
tumor_percentage = (tumor_pixels / total_pixels) * 100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
analysis_text = f"""
|
89 |
+
## π§ Brain Tumor Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
**π Results:**
|
92 |
+
- Tumor area: {tumor_percentage:.2f}% of brain
|
93 |
+
- Status: {'π΄ TUMOR DETECTED' if tumor_percentage > 1 else 'π’ NO SIGNIFICANT TUMOR'}
|
|
|
94 |
|
95 |
+
**π¬ Model:**
|
96 |
+
- Architecture: U-Net + EfficientNet-B4
|
97 |
+
- Framework: segmentation-models-pytorch
|
98 |
+
- Device: {device.type.upper()}
|
99 |
"""
|
100 |
+
|
|
|
101 |
return result_image, analysis_text
|
102 |
+
|
103 |
except Exception as e:
|
104 |
+
return None, f"β Error: {str(e)}"
|
|
|
|
|
105 |
|
106 |
def clear_all():
|
107 |
+
return None, None, "Upload an image to analyze"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# Create Gradio interface
|
110 |
+
with gr.Blocks(title="π§ Brain Tumor Segmentation") as app:
|
111 |
+
|
112 |
gr.HTML("""
|
113 |
+
<div style="text-align: center; padding: 20px; background: linear-gradient(90deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px;">
|
114 |
+
<h1>π§ Brain Tumor Segmentation</h1>
|
115 |
+
<p>Using the most popular segmentation-models-pytorch</p>
|
|
|
|
|
|
|
|
|
|
|
116 |
</div>
|
117 |
""")
|
118 |
+
|
119 |
with gr.Row():
|
120 |
with gr.Column(scale=1):
|
|
|
|
|
121 |
image_input = gr.Image(
|
122 |
+
label="Upload Brain MRI",
|
123 |
type="pil",
|
124 |
sources=["upload", "webcam"],
|
125 |
+
height=300
|
126 |
)
|
127 |
+
|
128 |
+
analyze_btn = gr.Button("π Analyze", variant="primary", size="lg")
|
129 |
+
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
130 |
+
|
|
|
131 |
with gr.Column(scale=2):
|
|
|
|
|
132 |
output_image = gr.Image(
|
133 |
+
label="Results",
|
134 |
type="pil",
|
135 |
+
height=400
|
136 |
)
|
137 |
+
|
138 |
analysis_output = gr.Markdown(
|
139 |
+
value="Upload an image to get started"
|
|
|
140 |
)
|
141 |
+
|
142 |
# Event handlers
|
143 |
analyze_btn.click(
|
144 |
+
fn=predict_tumor,
|
145 |
inputs=[image_input],
|
146 |
+
outputs=[output_image, analysis_output]
|
|
|
147 |
)
|
148 |
+
|
149 |
clear_btn.click(
|
150 |
fn=clear_all,
|
151 |
inputs=[],
|
|
|
153 |
)
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|