Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
@@ -9,7 +10,7 @@ data = pd.read_csv("mldata.csv")
|
|
9 |
|
10 |
|
11 |
#load prediction model from notebook
|
12 |
-
pickleFile = open('
|
13 |
rfmodel = pickle.load(pickleFile)
|
14 |
|
15 |
#Obtain the categorical/nominal data because it is not coded according (but based on the first occurence, first come first assign number)
|
@@ -190,8 +191,8 @@ demo =gr.Interface(fn = rfprediction, inputs=[
|
|
190 |
gr.Dropdown(worker_list, label="Are you a Smart worker or Hard worker?")
|
191 |
],
|
192 |
outputs=gr.Label(num_top_classes=5),
|
193 |
-
title="
|
194 |
-
|
195 |
)
|
196 |
|
197 |
|
|
|
1 |
+
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
|
|
10 |
|
11 |
|
12 |
#load prediction model from notebook
|
13 |
+
pickleFile = open('rfweights.pkl','rb')
|
14 |
rfmodel = pickle.load(pickleFile)
|
15 |
|
16 |
#Obtain the categorical/nominal data because it is not coded according (but based on the first occurence, first come first assign number)
|
|
|
191 |
gr.Dropdown(worker_list, label="Are you a Smart worker or Hard worker?")
|
192 |
],
|
193 |
outputs=gr.Label(num_top_classes=5),
|
194 |
+
title="IT-Career Recommendation System: TMI4033 Colletive Intelligence, Group 12",
|
195 |
+
description="Members: Derrick Lim Kin Yeap 74597, Jason Jong Sheng Tat 75125, Jason Ng Yong Xing 75127, Muhamad Hazrie Bin Suhkery 73555 "
|
196 |
)
|
197 |
|
198 |
|