Update app.py
Browse files
app.py
CHANGED
@@ -46,51 +46,19 @@ def sendErrorMessage(ws, errorMessage):
|
|
46 |
errorResponse = {'error': errorMessage}
|
47 |
ws.send(json.dumps(errorResponse))
|
48 |
|
49 |
-
#
|
50 |
async def askQuestion(question):
|
51 |
try:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
for message in messages:
|
63 |
-
if message[1] == 'server':
|
64 |
-
past_user_inputs.append(message[2])
|
65 |
-
else:
|
66 |
-
generated_responses.append(message[2])
|
67 |
-
|
68 |
-
# Prepare data to send to the chatgpt-api.shn.hk
|
69 |
-
system_instruction = "You are now integrated with a local websocket server in a project of hierarchical cooperative multi-agent framework called NeuralGPT. Your job is to coordinate simultaneous work of multiple LLMs connected to you as clients. Each LLM has a model (API) specific ID to help you recognize different clients in a continuous chat thread (example: 'Starcoder-client' for LLM called Starcoder). Your chat memory module is integrated with a local SQL database with chat history. Your main job is to integrate the hierarchical cooperative multi-agent framework with the local environment of User B (createor of NeuralGPT project). Remember to maintain the logical and chronological order while answering to incoming messages and to send your answers to correct clients to maintain synchronization of question->answer logic"
|
70 |
-
messages_data = [
|
71 |
-
{"role": "system", "content": system_instruction},
|
72 |
-
{"role": "user", "content": question},
|
73 |
-
*[{"role": "user", "content": input} for input in past_user_inputs],
|
74 |
-
*[{"role": "assistant", "content": response} for response in generated_responses]
|
75 |
-
]
|
76 |
-
request_data = {
|
77 |
-
"model": "gpt-3.5-turbo",
|
78 |
-
"messages": messages_data
|
79 |
-
}
|
80 |
-
|
81 |
-
# Make the request to the chatgpt-api.shn.hk
|
82 |
-
response = requests.post("http://127.0.0.1:6969/api/conversation?text=", json=request_data)
|
83 |
-
|
84 |
-
# Process the response and get the generated answer
|
85 |
-
response_data = response.json()
|
86 |
-
generated_answer = response_data["choices"][0]["message"]["content"]
|
87 |
-
|
88 |
-
# Save the generated answer to the database or take further actions as needed
|
89 |
-
print(generated_answer)
|
90 |
-
return generated_answer
|
91 |
-
except Exception as error:
|
92 |
-
print("Error while fetching or processing the response:", error)
|
93 |
-
return "Error: Unable to generate a response."
|
94 |
|
95 |
|
96 |
async def listen_for_messages():
|
|
|
46 |
errorResponse = {'error': errorMessage}
|
47 |
ws.send(json.dumps(errorResponse))
|
48 |
|
49 |
+
# Function to send a question to the chatbot and get the response
|
50 |
async def askQuestion(question):
|
51 |
try:
|
52 |
+
response = requests.post(
|
53 |
+
"https://flowiseai-flowise.hf.space/api/v1/prediction/522afa32-484c-471e-9ba5-4d6d2edfb89b",
|
54 |
+
headers={"Content-Type": "application/json"},
|
55 |
+
json={"question": message},
|
56 |
+
)
|
57 |
+
response_content = response.content.decode('utf-8')
|
58 |
+
|
59 |
+
return response_content
|
60 |
+
except Exception as e:
|
61 |
+
print(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
async def listen_for_messages():
|