File size: 2,760 Bytes
0a6ed15
 
 
 
 
 
 
 
 
 
 
74cdce5
 
 
 
 
 
 
 
 
 
0a6ed15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffef859
0a6ed15
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import streamlit as st
from sentence_transformers import SentenceTransformer
from langchain import hub
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_text_splitters import RecursiveCharacterTextSplitter
import bs4
import torch


# Initialize LangChain with your API key
lc_api = LangChainAPI(api_key=LANGCHAIN_API_KEY)


GROQ_API_KEY = GROQ_API_KEY
from langchain_groq import ChatGroq

llm = ChatGroq(model="llama3-8b-8192")

# Define the embedding class
class SentenceTransformerEmbedding:
    def __init__(self, model_name):
        self.model = SentenceTransformer(model_name)
    
    def embed_documents(self, texts):
        embeddings = self.model.encode(texts, convert_to_tensor=True)
        if isinstance(embeddings, torch.Tensor):
            return embeddings.cpu().detach().numpy().tolist()  # Convert tensor to list
        return embeddings
    
    def embed_query(self, query):
        embedding = self.model.encode([query], convert_to_tensor=True)
        if isinstance(embedding, torch.Tensor):
            return embedding.cpu().detach().numpy().tolist()[0]  # Convert tensor to list
        return embedding[0]

# Initialize the embedding class
embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')

# Load, chunk, and index the contents of the blog
def load_data():
    loader = WebBaseLoader(
        web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
        bs_kwargs=dict(
            parse_only=bs4.SoupStrainer(
                class_=("post-content", "post-title", "post-header")
            )
        ),
    )
    docs = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    splits = text_splitter.split_documents(docs)
    vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
    return vectorstore

vectorstore = load_data()

# Streamlit UI
st.title("Blog Retrieval and Question Answering")

question = st.text_input("Enter your question:")

if question:
    retriever = vectorstore.as_retriever()
    prompt = hub.pull("rlm/rag-prompt")

    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)

    rag_chain = (
        {"context": retriever | format_docs, "question": RunnablePassthrough()}
        | prompt
        | llm  # Replace with your LLM or appropriate function if needed
        | StrOutputParser()
    )

    # Example invocation
    try:
        result = rag_chain.invoke(question)
        st.write("Answer:", result)
    except Exception as e:
        st.error(f"An error occurred: {e}")