Spaces:
Sleeping
Sleeping
import streamlit as st | |
from sentence_transformers import SentenceTransformer | |
from langchain import hub | |
from langchain_chroma import Chroma | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
import bs4 | |
import torch | |
import getpass | |
# Prompt the user to enter their Langchain API key | |
api_key_langchain = st.text_input("Enter your LANGCHAIN_API_KEY", type="password") | |
# Check if the API key has been provided | |
if api_key_langchain: | |
# Use the API key in your app | |
st.write("LangChain API Key is set.") | |
else: | |
st.write("Please enter your LangChain API key.") | |
# Prompt the user to enter their Groq API key | |
api_key_Groq = st.text_input("Enter your Groq_API_KEY", type="password") | |
# Check if the Groq API key has been provided | |
if api_key_Groq: | |
# Use the Groq API key in your app | |
st.write("Groq API Key is set.") | |
else: | |
st.write("Please enter your Groq API key.") | |
# Initialize LangChain client (hypothetical example) | |
#lc_client = Client(api_key=LANGCHAIN_API_KEY) | |
GROQ_API_KEY = api_key_Groq | |
from langchain_groq import ChatGroq | |
llm = ChatGroq(model="llama3-8b-8192") | |
# Define the embedding class | |
class SentenceTransformerEmbedding: | |
def __init__(self, model_name): | |
self.model = SentenceTransformer(model_name) | |
def embed_documents(self, texts): | |
embeddings = self.model.encode(texts, convert_to_tensor=True) | |
if isinstance(embeddings, torch.Tensor): | |
return embeddings.cpu().detach().numpy().tolist() # Convert tensor to list | |
return embeddings | |
def embed_query(self, query): | |
embedding = self.model.encode([query], convert_to_tensor=True) | |
if isinstance(embedding, torch.Tensor): | |
return embedding.cpu().detach().numpy().tolist()[0] # Convert tensor to list | |
return embedding[0] | |
# Initialize the embedding class | |
embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2') | |
# Load, chunk, and index the contents of the blog | |
def load_data(): | |
loader = WebBaseLoader( | |
web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",), | |
bs_kwargs=dict( | |
parse_only=bs4.SoupStrainer( | |
class_=("post-content", "post-title", "post-header") | |
) | |
), | |
) | |
docs = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
splits = text_splitter.split_documents(docs) | |
vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model) | |
return vectorstore | |
vectorstore = load_data() | |
# Streamlit UI | |
st.title("Blog Retrieval and Question Answering") | |
question = st.text_input("Enter your question:") | |
if question: | |
retriever = vectorstore.as_retriever() | |
prompt = hub.pull("rlm/rag-prompt") | |
def format_docs(docs): | |
return "\n\n".join(doc.page_content for doc in docs) | |
rag_chain = ( | |
{"context": retriever | format_docs, "question": RunnablePassthrough()} | |
| prompt | |
| llm # Replace with your LLM or appropriate function if needed | |
| StrOutputParser() | |
) | |
# Example invocation | |
try: | |
result = rag_chain.invoke(question) | |
st.write("Answer:", result) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") |