Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -53,67 +53,67 @@ else:
|
|
53 |
|
54 |
# Load, chunk, and index the contents of the blog
|
55 |
def load_data(url):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
return None
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
prompt = hub.pull("rlm/rag-prompt", api_key=api_key_langchain)
|
101 |
-
|
102 |
-
def format_docs(docs):
|
103 |
-
return "\n\n".join(doc.page_content for doc in docs)
|
104 |
-
|
105 |
-
rag_chain = (
|
106 |
-
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
107 |
-
| prompt
|
108 |
-
| llm
|
109 |
-
| StrOutputParser()
|
110 |
-
)
|
111 |
-
|
112 |
-
# Example invocation
|
113 |
-
try:
|
114 |
-
result = rag_chain.invoke(question)
|
115 |
-
st.write("Answer:", result)
|
116 |
-
except Exception as e:
|
117 |
-
st.error(f"An error occurred while generating the answer: {e}")
|
118 |
-
else:
|
119 |
-
st.write("Failed to load the blog content. Please check the URL and try again.")
|
|
|
53 |
|
54 |
# Load, chunk, and index the contents of the blog
|
55 |
def load_data(url):
|
56 |
+
try:
|
57 |
+
loader = WebBaseLoader(
|
58 |
+
web_paths=(url,),
|
59 |
+
bs_kwargs=dict(
|
60 |
+
parse_only=bs4.SoupStrainer(
|
61 |
+
class_=("post-content", "post-title", "post-header")
|
62 |
+
)
|
63 |
+
),
|
64 |
+
)
|
65 |
+
docs = loader.load()
|
66 |
+
if not docs:
|
67 |
+
st.error("No documents were loaded. Please check the URL and try again.")
|
68 |
+
return None
|
69 |
+
|
70 |
+
st.write(f"Loaded {len(docs)} documents.")
|
71 |
+
|
72 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
73 |
+
splits = text_splitter.split_documents(docs)
|
74 |
+
if not splits:
|
75 |
+
st.error("No document splits were created. Please check the document content.")
|
76 |
+
return None
|
77 |
+
|
78 |
+
st.write(f"Created {len(splits)} document splits.")
|
79 |
+
|
80 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
|
81 |
+
if vectorstore is None:
|
82 |
+
st.error("Failed to create the vectorstore.")
|
83 |
+
return None
|
84 |
+
|
85 |
+
return vectorstore
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"An error occurred while loading the blog: {e}")
|
88 |
return None
|
89 |
+
|
90 |
+
|
91 |
+
# Load the data if a URL is provided
|
92 |
+
if blog_url:
|
93 |
+
vectorstore = load_data(blog_url)
|
94 |
+
if vectorstore:
|
95 |
+
# Streamlit UI for question input
|
96 |
+
question = st.text_input("Enter your question:")
|
97 |
+
|
98 |
+
if question:
|
99 |
+
retriever = vectorstore.as_retriever()
|
100 |
+
prompt = hub.pull("rlm/rag-prompt", api_key=api_key_langchain)
|
101 |
+
|
102 |
+
def format_docs(docs):
|
103 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
104 |
+
|
105 |
+
rag_chain = (
|
106 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
107 |
+
| prompt
|
108 |
+
| llm
|
109 |
+
| StrOutputParser()
|
110 |
+
)
|
111 |
+
|
112 |
+
# Example invocation
|
113 |
+
try:
|
114 |
+
result = rag_chain.invoke(question)
|
115 |
+
st.write("Answer:", result)
|
116 |
+
except Exception as e:
|
117 |
+
st.error(f"An error occurred while generating the answer: {e}")
|
118 |
+
else:
|
119 |
+
st.write("Failed to load the blog content. Please check the URL and try again.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|