import streamlit as st from sentence_transformers import SentenceTransformer from langchain import hub from langchain_chroma import Chroma from langchain_community.document_loaders import WebBaseLoader from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_text_splitters import RecursiveCharacterTextSplitter import bs4 import torch # Prompt the user to enter their Langchain API key api_key_langchain = st.text_input("Enter your LANGCHAIN_API_KEY", type="password") # Prompt the user to enter their Groq API key api_key_Groq = st.text_input("Enter your Groq_API_KEY", type="password") # Check if both API keys have been provided if not api_key_langchain or not api_key_Groq: st.write("Please enter both API keys if you want to access this app.") else: st.write("Both API keys are set.") # Initialize the LLM with the provided Groq API key from langchain_groq import ChatGroq llm = ChatGroq(model="llama3-8b-8192", groq_api_key=api_key_Groq) # Define the embedding class class SentenceTransformerEmbedding: def __init__(self, model_name): self.model = SentenceTransformer(model_name) def embed_documents(self, texts): embeddings = self.model.encode(texts, convert_to_tensor=True) if isinstance(embeddings, torch.Tensor): return embeddings.cpu().detach().numpy().tolist() # Convert tensor to list return embeddings def embed_query(self, query): embedding = self.model.encode([query], convert_to_tensor=True) if isinstance(embedding, torch.Tensor): return embedding.cpu().detach().numpy().tolist()[0] # Convert tensor to list return embedding[0] # Initialize the embedding class embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2') # Load, chunk, and index the contents of the blog def load_data(url): loader = WebBaseLoader( web_paths=(url,), bs_kwargs=dict( parse_only=bs4.SoupStrainer() ), ) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) splits = text_splitter.split_documents(docs) vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model) return vectorstore # Streamlit UI st.title("URL Retrieval and Question Answering") # Input URL from user url = st.text_input("Enter the URL:") if url: vectorstore = load_data(url) question = st.text_input("Enter your question:") if question: retriever = vectorstore.as_retriever() prompt = hub.pull("rlm/rag-prompt", api_key=api_key_langchain) def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm # Replace with your LLM or appropriate function if needed | StrOutputParser() ) # Example invocation try: result = rag_chain.invoke(question) st.write("Answer:", result) except Exception as e: st.error(f"An error occurred: {e}")