langTranslator / app.py
AreesaAshfaq's picture
Update app.py
a70ae15 verified
raw
history blame
1.66 kB
import streamlit as st
from transformers import MarianMTModel, MarianTokenizer
# Load the MarianMT model and tokenizer
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
model = MarianMTModel.from_pretrained(model_name)
tokenizer = MarianTokenizer.from_pretrained(model_name)
# Define target language codes directly
language_codes = {
'French': 'fr',
'German': 'de',
'Italian': 'it',
'Portuguese': 'pt',
'Spanish': 'es',
# Add more languages if needed
}
def translate_text(text, target_lang_code):
# Prepare the input and translate
inputs = tokenizer.encode(text, return_tensors="pt")
# Set the decoder start token ID based on language code
decoder_start_token_id = tokenizer.convert_tokens_to_ids(f"<{target_lang_code}>")
translated = model.generate(inputs, decoder_start_token_id=decoder_start_token_id)
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
def main():
st.title("English to Any Language Translator")
# User input for English text
text_to_translate = st.text_area("Enter text in English:")
# Language options
selected_language = st.selectbox("Select target language:", list(language_codes.keys()))
if st.button("Translate"):
if text_to_translate:
target_lang_code = language_codes[selected_language]
translated_text = translate_text(text_to_translate, target_lang_code)
st.write(f"**Translation in {selected_language}:**")
st.write(translated_text)
else:
st.warning("Please enter text to translate.")
if __name__ == "__main__":
main()