Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import MarianMTModel, MarianTokenizer
|
3 |
|
4 |
-
# Load the
|
5 |
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
|
6 |
model = MarianMTModel.from_pretrained(model_name)
|
7 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
def translate_text(text, target_lang):
|
10 |
-
#
|
11 |
inputs = tokenizer.encode(text, return_tensors="pt")
|
12 |
translated = model.generate(inputs, decoder_start_token_id=tokenizer.lang_code_to_id[target_lang])
|
13 |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
14 |
return translated_text
|
|
|
15 |
def main():
|
16 |
st.title("English to Any Language Translator")
|
17 |
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import MarianMTModel, MarianTokenizer
|
3 |
|
4 |
+
# Load the MarianMT model and tokenizer
|
5 |
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
|
6 |
model = MarianMTModel.from_pretrained(model_name)
|
7 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
def translate_text(text, target_lang):
|
10 |
+
# Prepare the input and translate
|
11 |
inputs = tokenizer.encode(text, return_tensors="pt")
|
12 |
translated = model.generate(inputs, decoder_start_token_id=tokenizer.lang_code_to_id[target_lang])
|
13 |
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
14 |
return translated_text
|
15 |
+
|
16 |
def main():
|
17 |
st.title("English to Any Language Translator")
|
18 |
|