KeyExtraction / app.py
Arhashmi's picture
Update app.py
8737388
raw
history blame
9.59 kB
import pandas
import nltk
nltk.download('wordnet')
# load the dataset
dataset = pandas.read_csv('covid_abstracts.csv')
dataset.head()
#Fetch wordcount for each abstract
dataset['word_count'] = dataset['title'].apply(lambda x: len(str(x).split(" ")))
dataset[['title','word_count']].head()
##Descriptive statistics of word counts
dataset.word_count.describe()
#Identify common words
freq = pandas.Series(' '.join(dataset['title'].astype(str)).split()).value_counts()[:20]
#freq = pandas.Series(' '.join(dataset['title']).split()).value_counts()[:20]
freq
#Identify uncommon words
freq1 = pandas.Series(' '.join(dataset['title'].astype(str)).split()).value_counts()[-20:]
#freq1 = pandas.Series(' '.join(dataset
# ['title']).split()).value_counts()[-20:]
freq1
from nltk.stem.porter import PorterStemmer
from nltk.stem.wordnet import WordNetLemmatizer
lem = WordNetLemmatizer()
stem = PorterStemmer()
word = "cryptogenic"
print("stemming:",stem.stem(word))
print("lemmatization:", lem.lemmatize(word, "v"))
import nltk
nltk.download('wordnet')
# Libraries for text preprocessing
import re
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from nltk.tokenize import RegexpTokenizer
#nltk.download('wordnet')
from nltk.stem.wordnet import WordNetLemmatizer
##Creating a list of stop words and adding custom stopwords
stop_words = set(stopwords.words("english"))
##Creating a list of custom stopwords
new_words = ["using", "show", "result", "large", "also", "iv", "one", "two", "new", "previously", "shown"]
stop_words = stop_words.union(new_words)
print(stop_words)
print(new_words)
corpus = []
for i in range(0, 3847):
#Remove punctuations
text = re.sub('[^a-zA-Z]', ' ', dataset['title'][i])
#Convert to lowercase
text = text.lower()
#remove tags
text=re.sub("</?.*?>"," <> ",text)
# remove special characters and digits
text=re.sub("(\\d|\\W)+"," ",text)
##Convert to list from string
text = text.split()
##Stemming
ps=PorterStemmer()
#Lemmatisation
lem = WordNetLemmatizer()
text = [lem.lemmatize(word) for word in text if not word in
stop_words]
text = " ".join(text)
corpus.append(text)
#View corpus item
corpus[222]
#View corpus item
corpus[300]
#Word cloud
from os import path
from PIL import Image
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
wordcloud = WordCloud(
background_color='white',
stopwords=stop_words,
max_words=100,
max_font_size=50,
random_state=42
).generate(str(corpus))
print(wordcloud)
fig = plt.figure(1)
plt.imshow(wordcloud)
plt.axis('off')
plt.show()
fig.savefig("word1.png", dpi=900)
from sklearn.feature_extraction.text import CountVectorizer
import re
# Assuming you have the 'corpus' defined
# and 'stop_words' defined as in your previous code
# Create a CountVectorizer with predefined English stop words
cv = CountVectorizer(max_df=0.8, stop_words='english', max_features=10000, ngram_range=(1, 3))
X = cv.fit_transform(corpus)
# Alternatively, use your custom stop words
custom_stop_words = ['same', 'hers', 'they', 'with', 'if', 'y', 'iv', 'new', ...] # Add your custom stop words
cv = CountVectorizer(max_df=0.8, stop_words=custom_stop_words, max_features=10000, ngram_range=(1, 3))
X = cv.fit_transform(corpus)
#from sklearn.feature_extraction.text import CountVectorizer
#import re
#cv=CountVectorizer(max_df=0.8,stop_words=stop_words, max_features=10000, ngram_range=(1,3))
#X=cv.fit_transform(corpus)
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(max_df=0.8, stop_words='english', max_features=10000, ngram_range=(1,3))
X = cv.fit_transform(corpus)
custom_stop_words = ['from', 'to', 'against', 'each', 'own', ...] # Add your custom stop words
cv = CountVectorizer(max_df=0.8, stop_words=custom_stop_words, max_features=10000, ngram_range=(1,3))
X = cv.fit_transform(corpus)
list(cv.vocabulary_.keys())[:10]
#Most frequently occuring words
def get_top_n_words(corpus, n=None):
vec = CountVectorizer().fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in
vec.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1],
reverse=True)
return words_freq[:n]
#Convert most freq words to dataframe for plotting bar plot
top_words = get_top_n_words(corpus, n=20)
top_df = pandas.DataFrame(top_words)
top_df.columns=["Word", "Freq"]
#Barplot of most freq words
import seaborn as sns
sns.set(rc={'figure.figsize':(13,8)})
g = sns.barplot(x="Word", y="Freq", data=top_df)
g.set_xticklabels(g.get_xticklabels(), rotation=30)
#Most frequently occuring Bi-grams
def get_top_n2_words(corpus, n=None):
vec1 = CountVectorizer(ngram_range=(2,2),
max_features=2000).fit(corpus)
bag_of_words = vec1.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in
vec1.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1],
reverse=True)
return words_freq[:n]
top2_words = get_top_n2_words(corpus, n=20)
top2_df = pandas.DataFrame(top2_words)
top2_df.columns=["Bi-gram", "Freq"]
print(top2_df)
#Barplot of most freq Bi-grams
import seaborn as sns
sns.set(rc={'figure.figsize':(13,8)})
h=sns.barplot(x="Bi-gram", y="Freq", data=top2_df)
h.set_xticklabels(h.get_xticklabels(), rotation=45)
#Most frequently occuring Tri-grams
def get_top_n3_words(corpus, n=None):
vec1 = CountVectorizer(ngram_range=(3,3),
max_features=2000).fit(corpus)
bag_of_words = vec1.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in
vec1.vocabulary_.items()]
words_freq =sorted(words_freq, key = lambda x: x[1],
reverse=True)
return words_freq[:n]
top3_words = get_top_n3_words(corpus, n=20)
top3_df = pandas.DataFrame(top3_words)
top3_df.columns=["Tri-gram", "Freq"]
print(top3_df)
#Barplot of most freq Tri-grams
import seaborn as sns
sns.set(rc={'figure.figsize':(13,8)})
j=sns.barplot(x="Tri-gram", y="Freq", data=top3_df)
j.set_xticklabels(j.get_xticklabels(), rotation=45)
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
# Assuming you already have the 'corpus' defined
# Create a CountVectorizer
cv = CountVectorizer(max_df=0.8, stop_words='english', max_features=10000, ngram_range=(1, 3))
# Fit and transform the corpus
X = cv.fit_transform(corpus)
# Create a TfidfTransformer and fit it to the CountVectorizer output
tfidf_transformer = TfidfTransformer(smooth_idf=True, use_idf=True)
tfidf_transformer.fit(X)
# Get feature names from CountVectorizer
feature_names = cv.get_feature_names_out()
# Fetch document for which keywords need to be extracted
doc = corpus[82]
# Generate tf-idf for the given document
tf_idf_vector = tfidf_transformer.transform(cv.transform([doc]))
# Now you can proceed with your further code
#Function for sorting tf_idf in descending order
from scipy.sparse import coo_matrix
def sort_coo(coo_matrix):
tuples = zip(coo_matrix.col, coo_matrix.data)
return sorted(tuples, key=lambda x: (x[1], x[0]), reverse=True)
def extract_topn_from_vector(feature_names, sorted_items, topn=10):
"""get the feature names and tf-idf score of top n items"""
#use only top n items from vector
sorted_items = sorted_items[:topn]
score_vals = []
feature_vals = []
# word index and corresponding tf-idf score
for idx, score in sorted_items:
#keep track of feature name and its corresponding score
score_vals.append(round(score, 3))
feature_vals.append(feature_names[idx])
#create a tuples of feature,score
#results = zip(feature_vals,score_vals)
results= {}
for idx in range(len(feature_vals)):
results[feature_vals[idx]]=score_vals[idx]
return results
#sort the tf-idf vectors by descending order of scores
sorted_items=sort_coo(tf_idf_vector.tocoo())
#extract only the top n; n here is 10
keywords=extract_topn_from_vector(feature_names,sorted_items,10)
# now print the results
print("\nAbstract:")
print(doc)
print("\nKeywords:")
for k in keywords:
print(k,keywords[k])
from gensim.models import word2vec
tokenized_sentences = [sentence.split() for sentence in corpus]
model = word2vec.Word2Vec(tokenized_sentences, min_count=1)
model.wv.most_similar(positive=["incidence"])
import nltk
#nltk.download('omw-1.4')
from nltk.corpus import wordnet as wn
wn.synsets('car')
wn.synset('car.n.01').definition()
import gradio as gr
from nltk.corpus import wordnet as wn
# Function to get the definition of the first synset for a given word
def get_synset_definition(word):
synsets = wn.synsets(word)
if synsets:
first_synset = synsets[0]
return first_synset.definition()
else:
return "No synsets found for the given word."
# Gradio Interface
iface = gr.Interface(
fn=get_synset_definition,
inputs=gr.Textbox(),
outputs=gr.Textbox(),
live=True,
title="Key Extraction",
description="Enter a word to get the definition of its first WordNet synset.",
)
# Launch the Gradio interface
iface.launch()