Spaces:
Sleeping
Sleeping
Update function.py
Browse files- function.py +39 -47
function.py
CHANGED
@@ -1,60 +1,52 @@
|
|
1 |
from langchain.prompts import PromptTemplate
|
2 |
-
from langchain.llms import CTransformers
|
3 |
-
from langchain.chains import LLMChain
|
4 |
-
from langchain.chains import SequentialChain
|
5 |
from langchain.llms import HuggingFaceHub
|
|
|
6 |
from dotenv import load_dotenv
|
|
|
7 |
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
selected_topic,
|
15 |
-
num_quizzes):
|
16 |
-
|
17 |
-
# Calling llama model
|
18 |
-
# llm = CTransformers(model="D:\Code Workspace\DL Model\llama-2-7b-chat.ggmlv3.q8_0.bin",
|
19 |
-
# model_type = 'llama',
|
20 |
-
# config = config)
|
21 |
-
|
22 |
-
# llm = CTransformers(model='TheBloke/Llama-2-7B-Chat-GGML',
|
23 |
-
# model_file = 'llama-2-7b-chat.ggmlv3.q8_0.bin',
|
24 |
-
# model_type = 'llama',
|
25 |
-
# config = config)
|
26 |
|
|
|
|
|
27 |
llm = HuggingFaceHub(
|
28 |
-
repo_id
|
29 |
-
model_kwargs
|
|
|
30 |
)
|
31 |
-
|
32 |
-
|
33 |
-
questions_template = "
|
34 |
questions_prompt = PromptTemplate(input_variables=["selected_topic_level", "selected_topic", "num_quizzes"],
|
35 |
template=questions_template)
|
36 |
-
questions_chain = LLMChain(llm=
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
## Generate the response from the llama 2 model
|
58 |
print(response)
|
|
|
|
|
59 |
return response
|
60 |
-
|
|
|
1 |
from langchain.prompts import PromptTemplate
|
|
|
|
|
|
|
2 |
from langchain.llms import HuggingFaceHub
|
3 |
+
from langchain.chains import LLMChain, SequentialChain
|
4 |
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
|
7 |
+
# Load environment variables from .env file
|
8 |
+
load_dotenv()
|
9 |
|
10 |
+
# Hugging Face Hub API token
|
11 |
+
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
12 |
|
13 |
+
# Configuration for language model
|
14 |
+
config = {'max_new_tokens': 512, 'temperature': 0.6}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
def GetLLMResponse(selected_topic_level, selected_topic, num_quizzes):
|
17 |
+
# Initialize Hugging Face Hub with API token
|
18 |
llm = HuggingFaceHub(
|
19 |
+
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
20 |
+
model_kwargs=config,
|
21 |
+
huggingfacehub_api_token=huggingfacehub_api_token
|
22 |
)
|
23 |
+
|
24 |
+
# Create LLM Chaining for generating questions
|
25 |
+
questions_template = "Generate a {selected_topic_level} math quiz on the topic of {selected_topic}. Generate only {num_quizzes} questions not more and without providing answers. The Question should not be in image format/link"
|
26 |
questions_prompt = PromptTemplate(input_variables=["selected_topic_level", "selected_topic", "num_quizzes"],
|
27 |
template=questions_template)
|
28 |
+
questions_chain = LLMChain(llm=llm, prompt=questions_prompt, output_key="questions")
|
29 |
+
|
30 |
+
# Create LLM Chaining for generating answers
|
31 |
+
answer_template = "I want you to become a teacher and answer this specific Question:\n{questions}\n\nYou should give me a straightforward and concise explanation and answer to each one of them."
|
32 |
+
answer_prompt = PromptTemplate(input_variables=["questions"], template=answer_template)
|
33 |
+
answer_chain = LLMChain(llm=llm, prompt=answer_prompt, output_key="answer")
|
34 |
+
|
35 |
+
# Create Sequential Chaining
|
36 |
+
seq_chain = SequentialChain(chains=[questions_chain, answer_chain],
|
37 |
+
input_variables=['selected_topic_level', 'selected_topic', 'num_quizzes'],
|
38 |
+
output_variables=['questions', 'answer'])
|
39 |
+
|
40 |
+
# Execute the chained prompts
|
41 |
+
response = seq_chain({
|
42 |
+
'selected_topic_level': selected_topic_level,
|
43 |
+
'selected_topic': selected_topic,
|
44 |
+
'num_quizzes': num_quizzes
|
45 |
+
})
|
46 |
+
|
47 |
+
# Print the response for debugging purposes
|
|
|
|
|
48 |
print(response)
|
49 |
+
|
50 |
+
# Return the response
|
51 |
return response
|
52 |
+
|