File size: 6,356 Bytes
47716cc 7c16f80 47716cc 7c16f80 47716cc 7c16f80 47716cc 7c16f80 47716cc 7c16f80 47716cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import random
import os
import datetime
import numpy as np
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def tts(txt, emotion, index, hps, net_g, random_emotion_root):
"""emotion为参考情感音频路径 或random_sample(随机抽取)"""
stn_tst = get_text(txt, hps)
rand_wav = ""
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
sid = torch.LongTensor([index]) ##appoint character
if os.path.exists(f"{emotion}"):
emo = torch.FloatTensor(np.load(f"{emotion}")).unsqueeze(0)
rand_wav = emotion
elif emotion == "random_sample":
while True:
rand_wav = random.sample(os.listdir(random_emotion_root), 1)[0]
if os.path.exists(f"{random_emotion_root}/{rand_wav}"):
break
emo = torch.FloatTensor(np.load(f"{random_emotion_root}/{rand_wav}")).unsqueeze(0)
print(f"{random_emotion_root}/{rand_wav}")
else:
print("emotion参数不正确")
audio = \
net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1, emo=emo)[
0][
0, 0].data.float().numpy()
path = random_emotion_root+"/"+rand_wav
return audio,path
def random_generate(txt, index, hps, net_g, random_emotion_root):
audio ,rand_wav= tts(txt, emotion='random_sample', index=index, hps=hps, net_g=net_g,
random_emotion_root=random_emotion_root)
return audio,rand_wav
def charaterRoot(name):
global random_emotion_root
if name == '九条都':
random_emotion_root = "9nineEmo/my"
index = 0
elif name == '新海天':
random_emotion_root = "9nineEmo/sr"
index = 1
elif name == '结城希亚':
random_emotion_root = "9nineEmo/na"
index = 2
elif name == '蕾娜':
random_emotion_root = "9nineEmo/gt"
index = 3
elif name == '索菲':
random_emotion_root = "9nineEmo/sf"
index = 4
return random_emotion_root, index
def configSelect(config):
global checkPonit, config_file
if config == 'mul':
config_file = "./configs/9nine_multi.json"
checkPonit = "logs/9nineM/G_252000.pth"
elif config == "single":
config_file = "./configs/sora.json"
checkPonit = "logs/sora/G_341200.pth"
return config_file, checkPonit
def runVits(name, config, txt,emotion):
config_file, checkPoint = configSelect(config)
random_emotion_root, index = charaterRoot(name=name)
checkPonit = checkPoint
hps = utils.get_hparams_from_file(config_file)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
_ = net_g.eval()
_ = utils.load_checkpoint(checkPonit, net_g, None)
audio, rand_wav = tts(txt, emotion=emotion, index=index, hps=hps, net_g=net_g,
random_emotion_root=random_emotion_root)
return (hps.data.sampling_rate, audio),rand_wav
def nineMul(name, txt):
config = 'mul'
audio ,rand_wav= runVits(name, config, txt,'random_sample')
return "multiple model success", audio,rand_wav
def nineSingle(name,txt):
config = 'single'
# name = "新海天"
audio ,rand_wav= runVits(name, config, txt,'random_sample')
return "single model success", audio,rand_wav
def nineMul_select_emo(name, txt,emo):
config = 'mul'
# emo = "./9nine"emotion
print(emo)
audio, _ = runVits(name, config, txt, emo)
message = "情感依赖:" + emo + "sythesis success!"
return message,audio
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("9nine multiple model"):
character = gr.Radio(['九条都', '新海天', '结城希亚', '蕾娜', '索菲'], label='character',
info="select character you want")
text = gr.TextArea(label="input content,Japanese support only", value="祭りに行っただよね、知らない女の子と一緒にいて。")
submit = gr.Button("generate", variant='privite')
message = gr.Textbox(label="Message")
audio = gr.Audio(label="output")
emotion = gr.Textbox(label="参照情感:")
submit.click(nineMul, [character, text], [message, audio,emotion])
with gr.TabItem("9nine single model"):
character = gr.Radio(['新海天'], label='character',
info="single model for 新海天 only")
text = gr.TextArea(label="input content,Japanese support only", value="祭りに行っただよね、知らない女の子と一緒にいて。")
submit = gr.Button("generate", variant='privite')
message = gr.Textbox(label="Message")
audio = gr.Audio(label="output")
emotion = gr.Textbox(label="参照情感:")
submit.click(nineSingle, [character, text], [message, audio,emotion])
with gr.TabItem("Choose Emotion Embedding"):
character = gr.Radio(['九条都', '新海天', '结城希亚', '蕾娜', '索菲'], label='character',
info="select character you want")
text = gr.TextArea(label="input content, Japanese support only", value="祭りに行っただよね、知らない女の子と一緒にいて。")
emotion = gr.Textbox(label="从多人模型中获得的情感依照。例如”./9nineEmo/sf/sf0207.wav.emo.npy“,尽量使用本人的情感他人的情感会串味")
submit = gr.Button("generate", variant='privite')
message = gr.Textbox(label="Message")
audio = gr.Audio(label="output")
submit.click(nineMul_select_emo, [character, text,emotion], [message, audio])
app.launch()
|