TTSdemo / app.py
AriaMei
py file
991e874
raw
history blame
4.89 kB
import gradio as gr
import torch
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
import random
import os
import datetime
import numpy as np
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def tts(txt, emotion, index, hps, net_g, random_emotion_root):
"""emotion为参考情感音频路径 或random_sample(随机抽取)"""
stn_tst = get_text(txt, hps)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
sid = torch.LongTensor([index]) ##appoint character
if os.path.exists(f"{emotion}.emo.npy"):
emo = torch.FloatTensor(np.load(f"{emotion}.emo.npy")).unsqueeze(0)
elif emotion == "random_sample":
while True:
rand_wav = random.sample(os.listdir(random_emotion_root), 1)[0]
if os.path.exists(f"{random_emotion_root}/{rand_wav}"):
break
emo = torch.FloatTensor(np.load(f"{random_emotion_root}/{rand_wav}")).unsqueeze(0)
print(f"{random_emotion_root}/{rand_wav}")
else:
print("emotion参数不正确")
audio = \
net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=1, emo=emo)[
0][
0, 0].data.float().numpy()
return audio
def random_generate(txt, index, hps, net_g, random_emotion_root):
audio = tts(txt, emotion='random_sample', index=index, hps=hps, net_g=net_g,
random_emotion_root=random_emotion_root)
return audio
def charaterRoot(name):
global random_emotion_root
if name == '九条都':
random_emotion_root = "./9nineEmo/my"
index = 0
elif name == '新海天':
random_emotion_root = "./9nineEmo/sr"
index = 1
elif name == '结城希亚':
random_emotion_root = "./9nineEmo/na"
index = 2
elif name == '蕾娜':
random_emotion_root = "./9nineEmo/gt"
index = 3
elif name == '索菲':
random_emotion_root = "./9nineEmo/sf"
index = 4
return random_emotion_root, index
def configSelect(config):
global checkPonit, config_file
if config == 'mul':
config_file = "./configs/9nine_multi.json"
checkPonit = "logs/9nineM/G_115600.pth"
elif config == "single":
config_file = "./configs/sora.json"
checkPonit = "logs/sora/G_341200.pth"
return config_file, checkPonit
def runVits(name, config, txt):
config_file, checkPoint = configSelect(config)
random_emotion_root, index = charaterRoot(name=name)
checkPonit = checkPoint
hps = utils.get_hparams_from_file(config_file)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
_ = net_g.eval()
_ = utils.load_checkpoint(checkPonit, net_g, None)
audio = random_generate(txt=txt, index=index, random_emotion_root=random_emotion_root,
net_g=net_g, hps=hps)
return (hps.data.sampling_rate, audio)
def nineMul(name, txt):
config = 'mul'
audio = runVits(name, config, txt)
return "multiple model success", audio
def nineSingle(name,txt):
config = 'mul'
# name = "新海天"
audio = runVits(name, config, txt)
return "single model success", audio
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("9nine multiple model"):
character = gr.Radio(['九条都', '新海天', '结城希亚', '蕾娜', '索菲'], label='character',
info="select character you want")
text = gr.TextArea(label="input content", value="こんにちは。私わあやちねねです。")
submit = gr.Button("generate", variant='privite')
message = gr.Textbox(label="Message")
audio = gr.Audio(label="output")
submit.click(nineMul, [character, text], [message, audio])
with gr.TabItem("9nine single model"):
character = gr.Radio(['新海天'], label='character',
info="select character you want")
text = gr.TextArea(label="input content", value="こんにちは。私わあやちねねです。")
submit = gr.Button("generate", variant='privite')
message = gr.Textbox(label="Message")
audio = gr.Audio(label="output")
submit.click(nineSingle, [character, text], [message, audio])
app.launch(share=True)