Spaces:
Runtime error
Runtime error
Ariel Hsieh
commited on
update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,48 @@
|
|
1 |
import streamlit as st #Web App
|
2 |
from transformers import pipeline
|
|
|
|
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
|
6 |
#title
|
7 |
st.title("Toxic Tweets")
|
8 |
|
9 |
-
model = st.selectbox("Which pretrained model would you like to use?",("roberta-large-mnli","twitter-XLM-roBERTa-base","bertweet-sentiment-analysis"))
|
10 |
|
11 |
#d = {'col1':[1,2],'col2':[3,4]}
|
12 |
#data = pd.DataFrame(data=d)
|
13 |
#st.table(data)
|
14 |
|
15 |
-
data = []
|
16 |
-
text = st.text_input("Enter text here:","Artificial Intelligence is useful")
|
17 |
-
data.append(text)
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
#st.write("The classification of the given text is " + label + " with a score of " + str(score))
|
31 |
|
32 |
|
|
|
1 |
import streamlit as st #Web App
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
|
8 |
#title
|
9 |
st.title("Toxic Tweets")
|
10 |
|
11 |
+
# model = st.selectbox("Which pretrained model would you like to use?",("roberta-large-mnli","twitter-XLM-roBERTa-base","bertweet-sentiment-analysis"))
|
12 |
|
13 |
#d = {'col1':[1,2],'col2':[3,4]}
|
14 |
#data = pd.DataFrame(data=d)
|
15 |
#st.table(data)
|
16 |
|
17 |
+
# data = []
|
18 |
+
# text = st.text_input("Enter text here:","Artificial Intelligence is useful")
|
19 |
+
# data.append(text)
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained("Ariel8/toxic-tweets-classification")
|
22 |
+
model = AutoModelForSequenceClassification.from_pretrained("Ariel8/toxic-tweets-classification")
|
23 |
|
24 |
+
X_train = ["Why is Owen's retirement from football not mentioned? He hasn't played a game since 2005."]
|
25 |
+
batch = tokenizer(X_train, truncation=True, padding='max_length', return_tensors="pt")
|
26 |
+
labels = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
|
27 |
+
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(**batch)
|
30 |
+
predictions = torch.sigmoid(outputs.logits)*100
|
31 |
+
probs = predictions[0].tolist()
|
32 |
+
for i in range(len(probs)):
|
33 |
+
st.write(f"{labels[i]}: {round(probs[i], 3)}%")
|
34 |
+
|
35 |
+
# if model == "roberta-large-mnli":
|
36 |
+
# #1
|
37 |
+
# if st.button("Run Sentiment Analysis of Text"):
|
38 |
+
# model_path = "roberta-large-mnli"
|
39 |
+
# sentiment_pipeline = pipeline(model=model_path)
|
40 |
+
# result = sentiment_pipeline(data)
|
41 |
+
# label = result[0]["label"]
|
42 |
+
# score = result[0]["score"]
|
43 |
+
# d = {'tweet':[model_path],'classification':[label],'score':[score]}
|
44 |
+
# dataframe = pd.DataFrame(data=d)
|
45 |
+
# st.table(dataframe)
|
46 |
#st.write("The classification of the given text is " + label + " with a score of " + str(score))
|
47 |
|
48 |
|