Ariel commited on
Commit
f8fbdd8
Β·
1 Parent(s): c6d84d3

Upload app

Browse files
README.md CHANGED
@@ -10,5 +10,4 @@ pinned: false
10
  license: apache-2.0
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
- sadasd
 
10
  license: apache-2.0
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
app.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from ultralytics import YOLO
3
+ from PIL import Image
4
+ import requests
5
+ import os
6
+ import random
7
+
8
+ model = YOLO('detector.pt')
9
+
10
+
11
+ def satellite_image_params(address, api_key, zoom, size):
12
+ """
13
+ Generate parameters for Google Maps API request based on given address, API key, zoom level, and image size.
14
+
15
+ Parameters:
16
+ address (str): The address to center the map on.
17
+ api_key (str): Google Maps API key.
18
+ zoom (int): Zoom level for the map.
19
+ size (str): Size of the requested map image.
20
+
21
+ Returns:
22
+ dict: A dictionary of parameters for the API request.
23
+ """
24
+ params = {
25
+ "center": address,
26
+ "zoom": str(zoom),
27
+ "size": size,
28
+ "maptype": "satellite",
29
+ "key": api_key
30
+ }
31
+ return params
32
+
33
+
34
+ def fetch_satellite_image(address, api_key, zoom=18, size="640x640"):
35
+ """
36
+ Fetches a satellite image from Google Maps API based on the given address, api_key, zoom level, and size.
37
+
38
+ Parameters:
39
+ address (str): The address for the satellite image.
40
+ api_key (str): Google Maps API key.
41
+ zoom (int): Zoom level for the satellite image.
42
+ size (str): Size of the satellite image.
43
+
44
+ Returns:
45
+ str: File name of the saved satellite image or None if the request fails.
46
+ """
47
+ base_url = "https://maps.googleapis.com/maps/api/staticmap?"
48
+ params = satellite_image_params(address, api_key, zoom=zoom, size=size)
49
+ try:
50
+ response = requests.get(base_url, params=params)
51
+ except requests.exceptions.RequestException as e:
52
+ print(e)
53
+ return None
54
+ if response.status_code == 200:
55
+ image_data = response.content
56
+ img_name = f"{'_'.join(address.split()[-2:])}.jpg"
57
+ with open(img_name, "wb") as file:
58
+ file.write(image_data)
59
+ print("Image was downloaded successfully")
60
+ return img_name
61
+
62
+
63
+ def plot_results(im_array, save_image=False, img_path="results.jpg"):
64
+ """
65
+ Converts an image array to a PIL image and optionally saves it.
66
+
67
+ Parameters:
68
+ im_array (numpy.ndarray): The image array to be converted.
69
+ save_image (bool): Whether to save the image.
70
+ img_path (str): Path to save the image.
71
+
72
+ Returns:
73
+ PIL.Image: The converted PIL image.
74
+ """
75
+ im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
76
+ if save_image:
77
+ im.save(img_path) # save image
78
+ return im
79
+
80
+
81
+ def solar_panel_predict(image, conf=0.45):
82
+ """
83
+ Analyzes an image to detect solar panels and returns an annotated image along with a relevant message.
84
+
85
+ This function uses a model to detect solar panels in the given image. If solar panels are detected with confidence
86
+ above the specified threshold, it selects a positive sentence; otherwise, it chooses a sentence encouraging
87
+ solar panel installation. It also annotates the image with detection results.
88
+
89
+ Parameters:
90
+ image: The input image for solar panel detection.
91
+ conf: Confidence threshold for detection, default is 0.5.
92
+
93
+ Returns:
94
+ Tuple of (annotated image, prediction message)
95
+ """
96
+ negative_setences = [
97
+ "No solar panels yet? Your roof is a blank canvas waiting for a green masterpiece! 🎨🌱",
98
+ "It's lonely up here without solar panels. Imagine the sun-powered parties you're missing! πŸŒžπŸŽ‰",
99
+ "Your roof could be a superhero in disguise. Just needs its solar cape! πŸ¦Έβ€β™‚οΈβ˜€οΈ",
100
+ "Clear skies, empty roof. It's the perfect opportunity to harness the sun! πŸŒ€οΈπŸ”‹",
101
+ "No panels detected – but don't worry, it's never too late to join the solar revolution and be a ray of hope! πŸŒπŸ’‘"]
102
+
103
+ positive_sentences = [
104
+ "Solar panels detected: You're not just saving money, you're also charging up Mother Earth's good vibes! πŸŒπŸ’š",
105
+ "Roof status: Sunny side up! Your panels are turning rays into awesome days! β˜€οΈπŸ˜Ž",
106
+ "You've got solar power! Now your roof is cooler than a polar bear in sunglasses. πŸ»β€β„οΈπŸ•ΆοΈ",
107
+ "Green alert: Your roof is now a climate hero's cape! Solar panels are saving the day, one ray at a time. πŸ¦Έβ€β™‚οΈπŸŒž",
108
+ "Solar panels spotted: Your roof is now officially a member of the Renewable Energy Rockstars Club! ⭐🌱"]
109
+
110
+ results = model(image, stream=True, conf=conf)
111
+ for result in results:
112
+ annotated_image = result.plot()
113
+ im = plot_results(annotated_image)
114
+
115
+ r = result.boxes
116
+ confi = r.conf.numpy().tolist()
117
+ if not confi:
118
+ prediction = random.choice(negative_setences)
119
+ else:
120
+ prediction = random.choice(positive_sentences)
121
+ return im, prediction
122
+
123
+
124
+ def detector(address, api_key, zoom=18, size="640x640"):
125
+ """
126
+ Detects solar panels in a satellite image fetched based on the given address.
127
+
128
+ Parameters:
129
+ address (str): The address to fetch the satellite image of.
130
+ api_key (str): Google Maps API key.
131
+ zoom (int): Zoom level for the image.
132
+ size (str): Size of the image.
133
+
134
+ Returns:
135
+ tuple: Prediction text and detected image.
136
+ """
137
+ img_name = fetch_satellite_image(address, api_key, zoom=zoom, size=size)
138
+ im, prediction = solar_panel_predict(img_name)
139
+ return im, prediction
140
+
141
+ custom_css = """
142
+ .feedback textarea {font-size: 20px !important;}
143
+ .centered-text {text-align: center; width: 100%;}
144
+ """
145
+
146
+ with gr.Blocks(theme="HaleyCH/HaleyCH_Theme", title="Solar Panel Detector", css=custom_css) as app:
147
+ # add logo
148
+ gr.Markdown("# **Solar Panel Detector 2.0** πŸ›°οΈβ˜€οΈ", elem_classes="centered-text")
149
+ with gr.Column(scale=1, variant="default"):
150
+ gr.HTML(f"""
151
+ <div style='text-align: center;'>
152
+ <img src='https://github.com/ArielDrabkin/solar-panel-detector2/blob/master/deployment/examples/DALL-E.jpeg?raw=true'
153
+ height='500' width='1200';'/>
154
+ </div>
155
+ """)
156
+ gr.Markdown("## This app provides the ability to detect solar panels in a given address or a given image.")
157
+
158
+ gr.Markdown("### Using by address with google maps:\n1. Enter your address.\n"
159
+ "2. Insert your Google maps api key which you can get from - "
160
+ "https://developers.google.com/maps/documentation/maps-static/get-api-key .\n"
161
+ "3. Choose the zoom level (19 is the default).")
162
+ address = gr.Textbox(label="Address")
163
+ api_key = gr.Textbox(label="Google maps api key", type="password")
164
+ zoom = gr.Slider(minimum=18, maximum=22, step=1, value=19, label="zoom")
165
+ btn = gr.Button(value="Submit")
166
+ with gr.Row():
167
+ predicted_image_address = gr.Image(type="pil", show_label=False, scale=1)
168
+ prediction_address = gr.Textbox(type="text", show_label=False, scale=1, elem_classes="feedback")
169
+ btn.click(detector, inputs=[address, api_key, zoom], outputs=[predicted_image_address, prediction_address])
170
+
171
+ gr.Markdown("### Using by a given image:\nUpload an image or use the examples below.")
172
+ with gr.Row():
173
+ im = gr.Image(type="pil", show_label=False, scale=1)
174
+ predicted_image = gr.Image(type="pil", show_label=False, scale=1)
175
+
176
+ prediction = gr.Textbox(type="text", show_label=False, elem_classes="feedback")
177
+ btn = gr.Button(value="Submit")
178
+ btn.click(solar_panel_predict, inputs=im, outputs=[predicted_image, prediction])
179
+
180
+ gr.Markdown("### Image Examples")
181
+ gr.Examples(
182
+ examples=[os.path.join(os.path.dirname(__file__), "examples/Gottingen.jpg"),
183
+ os.path.join(os.path.dirname(__file__), "examples/Tubingen.jpg"),
184
+ os.path.join(os.path.dirname(__file__), "examples/San-Diego.jpg"),
185
+ os.path.join(os.path.dirname(__file__), "examples/Ceske-Budejovice.jpg")],
186
+ inputs=im,
187
+ outputs=[predicted_image, prediction],
188
+ fn=solar_panel_predict,
189
+ cache_examples=False,
190
+ )
191
+
192
+ if __name__ == "__main__":
193
+ app.launch()
detector.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ba1e94a8c8850342d995a95875b6bbf2d0cb567803d33c945a8a4b4ba9e345
3
+ size 6261081
examples/Ceske-Budejovice.jpg ADDED
examples/Gottingen.jpg ADDED
examples/San-Diego.jpg ADDED
examples/Tubingen.jpg ADDED
requirements.txt ADDED
Binary file (142 Bytes). View file