import gradio as gr import os from SolarPanelDetector import solar_panel_predict, detector # Custom CSS for styling the app custom_css = """ .feedback textarea {font-size: 20px !important;} .centered-text {text-align: center; width: 100%;} .center-image {display: flex; justify-content: center; align-items: center;} """ # URL for the logo image logo_url = 'https://raw.githubusercontent.com/ArielDrabkin/Solar-Panel-Detector/master/deployment/examples/DALL-E.jpeg' # Starting Gradio app configuration with gr.Blocks(theme="HaleyCH/HaleyCH_Theme", title="Solar Panel Detector", css=custom_css) as app: # Main title for the app gr.Markdown("# **Solar Panel Detector 2.0** 🛰️☀️", elem_classes="centered-text") # Displaying the logo with gr.Row(elem_classes="center-image"): gr.Image(logo_url, scale=1, height=450, width=700, show_label=False, show_download_button=False, show_share_button=False) # Description for using the app with address and Google Maps API gr.Markdown( "## This app provides the ability to detect solar panels in a given address or a given satellite image. " "You can learn all about the project and the model in [this article](https://levelup.gitconnected.com/solar-panel-detector-guide-to-an-end-to-end-computer-vision-project-using-nothing-but-free-a7ee3610de43)") # Instructions for address-based detection gr.Markdown("### Using by address with google maps:\n1. Enter an address or geographic coordinates.\n" "2. Insert your Google maps api key which you can get from - " "https://developers.google.com/maps/documentation/maps-static/get-api-key .\n" "3. Choose the zoom level (19 is the default).") address = gr.Textbox(label="Address") api_key = gr.Textbox(label="Google maps api key", type="password") zoom = gr.Slider(minimum=18, maximum=22, step=1, value=19, label="zoom") btn = gr.Button(value="Submit") # Layout for displaying predictions for address-based detection with gr.Row(): predicted_image_address = gr.Image(type="pil", show_label=False, scale=1) prediction_address = gr.Textbox(type="text", show_label=False, scale=1, elem_classes="feedback") btn.click(detector, inputs=[address, api_key, zoom], outputs=[predicted_image_address, prediction_address]) # Description for image-based detection gr.Markdown("### Using by a given image:\nUpload an image or use the examples below.") with gr.Row(): im = gr.Image(type="pil", show_label=False, scale=1) predicted_image = gr.Image(type="pil", show_label=False, scale=1) # Layout for displaying predictions for image-based detection prediction = gr.Textbox(type="text", show_label=False, elem_classes="feedback") btn = gr.Button(value="Submit") # Function call for image-based detection btn.click(solar_panel_predict, inputs=im, outputs=[predicted_image, prediction]) # Providing example images for quick testing gr.Markdown("### Image Examples") gr.Examples( examples=[os.path.join(os.path.dirname(__file__), "examples/Gottingen.jpg"), os.path.join(os.path.dirname(__file__), "examples/Tubingen.jpg"), os.path.join(os.path.dirname(__file__), "examples/San-Diego.jpg"), os.path.join(os.path.dirname(__file__), "examples/Ceske-Budejovice.jpg")], inputs=im, outputs=[predicted_image, prediction], fn=solar_panel_predict, cache_examples=False, ) if __name__ == "__main__": app.launch()