Spaces:
Runtime error
Runtime error
File size: 14,146 Bytes
c6cec04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import tensorflow as tf
import json
import numpy as np
from tensorflow.keras.models import model_from_json
import os
# Convert the variables to the correct data type
# Load the variables from the JSON file
# Get the directory of the current file (preprocess_coordinates_data.py)
current_directory = os.path.dirname(os.path.abspath(__file__))
# Construct the path to variables.json
json_file_path = os.path.join(current_directory, 'variables.json')
with open(json_file_path, 'r') as json_file:
variables_dict = json.load(json_file)
# Epsilon value for layer normalisation
LAYER_NORM_EPS = variables_dict['LAYER_NORM_EPS']
# final embedding and transformer embedding size
UNITS_ENCODER = variables_dict['UNITS_ENCODER']
UNITS_DECODER = variables_dict['UNITS_DECODER']
# Transformer
NUM_BLOCKS_ENCODER = variables_dict['NUM_BLOCKS_ENCODER']
NUM_BLOCKS_DECODER = variables_dict['NUM_BLOCKS_DECODER']
NUM_HEADS = variables_dict['NUM_HEADS']
MLP_RATIO = variables_dict['MLP_RATIO']
# Dropout
EMBEDDING_DROPOUT = variables_dict['EMBEDDING_DROPOUT']
MLP_DROPOUT_RATIO = variables_dict['MLP_DROPOUT_RATIO']
MHA_DROPOUT_RATIO = variables_dict['MHA_DROPOUT_RATIO']
CLASSIFIER_DROPOUT_RATIO = variables_dict['CLASSIFIER_DROPOUT_RATIO']
# Number of Frames to resize recording to
N_TARGET_FRAMES = variables_dict['N_TARGET_FRAMES']
N_UNIQUE_CHARACTERS = variables_dict['N_UNIQUE_CHARACTERS']
N_UNIQUE_CHARACTERS0 = variables_dict['N_UNIQUE_CHARACTERS0']
PAD_TOKEN = variables_dict['PAD_TOKEN']
SOS_TOKEN = variables_dict['SOS_TOKEN']
# Length of Phrase + EOS Token
MAX_PHRASE_LENGTH = variables_dict['MAX_PHRASE_LENGTH']
# Mean/Standard Deviations of data used for normalizing
MEANS = np.array(variables_dict['MEANS'])
STDS = np.array(variables_dict['STDS'])
# Initiailizers
INIT_HE_UNIFORM = tf.keras.initializers.he_uniform
INIT_GLOROT_UNIFORM = tf.keras.initializers.glorot_uniform
INIT_ZEROS = tf.keras.initializers.constant(0.0)
# Activations
GELU = tf.keras.activations.gelu
class Embedding(tf.keras.Model):
def __init__(self, **kwargs):
super(Embedding, self).__init__(**kwargs)
self.supports_masking = True
def build(self, input_shape):
self.positional_embedding = tf.Variable(
initial_value=tf.zeros([N_TARGET_FRAMES, UNITS_ENCODER], dtype=tf.float32),
trainable=True, name='embedding_positional_encoder')
self.dominant_hand_embedding = LandmarkEmbedding(UNITS_ENCODER, 'dominant_hand')
def call(self, x, training=False):
x = tf.where(tf.math.equal(x, 0.0), 0.0, (x - MEANS) / STDS)
x = self.dominant_hand_embedding(x)
x = x + self.positional_embedding
return x
def get_config(self):
return super().get_config()
@classmethod
def from_config(cls, config):
return cls(**config)
class Encoder(tf.keras.Model):
def __init__(self, num_blocks, **kwargs):
super(Encoder, self).__init__(**kwargs)
self.num_blocks = num_blocks
self.support_masking = True
self.blocks = [
EncoderTransformerBlock(UNITS_ENCODER, NUM_HEADS, MLP_RATIO, MHA_DROPOUT_RATIO, MLP_DROPOUT_RATIO) for _ in
range(num_blocks)]
if UNITS_ENCODER != UNITS_DECODER:
self.dense_out = tf.keras.layers.Dense(UNITS_DECODER, kernel_initializer=INIT_GLOROT_UNIFORM,
use_bias=False)
self.apply_dense_out = True
else:
self.apply_dense_out = False
def call(self, x, x_inp, training=False):
attention_mask = tf.where(tf.math.reduce_sum(x_inp, axis=[2]) == 0.0, 0.0, 1.0)
attention_mask = tf.expand_dims(attention_mask, axis=1)
attention_mask = tf.repeat(attention_mask, repeats=N_TARGET_FRAMES, axis=1)
for block in self.blocks:
x = block(x, attention_mask=attention_mask, training=training)
if self.apply_dense_out:
x = self.dense_out(x)
return x, attention_mask
def get_config(self):
config = super().get_config()
config.update({"num_blocks": self.num_blocks})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
class Decoder(tf.keras.Model):
def __init__(self, num_blocks, **kwargs):
super(Decoder, self).__init__(**kwargs)
self.num_blocks = num_blocks
self.supports_masking = True
self.positional_embedding = tf.Variable(
initial_value=tf.zeros([N_TARGET_FRAMES, UNITS_DECODER], dtype=tf.float32),
trainable=True, name='embedding_positional_encoder')
self.char_emb = tf.keras.layers.Embedding(N_UNIQUE_CHARACTERS, UNITS_DECODER, embeddings_initializer=INIT_ZEROS)
self.pos_emb_mha = MultiHeadAttention(UNITS_DECODER, NUM_HEADS, MHA_DROPOUT_RATIO)
self.pos_emb_ln = tf.keras.layers.LayerNormalization(epsilon=LAYER_NORM_EPS)
self.blocks = [
DecoderTransformerBlock(UNITS_DECODER, NUM_HEADS, MLP_RATIO, MHA_DROPOUT_RATIO, MLP_DROPOUT_RATIO) for _ in
range(num_blocks)]
def get_causal_attention_mask(self, B):
ones = tf.ones((N_TARGET_FRAMES, N_TARGET_FRAMES))
mask = tf.linalg.band_part(ones, 0, -1)
mask = tf.transpose(mask)
mask = tf.expand_dims(mask, axis=0)
mask = tf.tile(mask, [B, 1, 1])
mask = tf.cast(mask, tf.float32)
return mask
def call(self, encoder_outputs, attention_mask, phrase, training=False):
B = tf.shape(encoder_outputs)[0]
phrase = tf.cast(phrase, tf.int32)
phrase = tf.pad(phrase, [[0, 0], [1, 0]], constant_values=SOS_TOKEN, name='prepend_sos_token')
phrase = tf.pad(phrase, [[0, 0], [0, N_TARGET_FRAMES - MAX_PHRASE_LENGTH - 1]], constant_values=PAD_TOKEN,
name='append_pad_token')
causal_mask = self.get_causal_attention_mask(B)
x = self.positional_embedding + self.char_emb(phrase)
x = self.pos_emb_ln(x + self.pos_emb_mha(x, x, x, attention_mask=causal_mask))
for block in self.blocks:
x = block(x, encoder_outputs, attention_mask=attention_mask, training=training)
x = tf.slice(x, [0, 0, 0], [-1, MAX_PHRASE_LENGTH, -1])
return x
def get_config(self):
config = super().get_config()
config.update({"num_blocks": self.num_blocks})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
# Embeds a landmark using fully connected layers
class LandmarkEmbedding(tf.keras.Model):
def __init__(self, units, name):
super(LandmarkEmbedding, self).__init__(name=f'{name}_embedding')
self.units = units
self.supports_masking = True
def build(self, input_shape):
# Embedding for missing landmark in frame, initizlied with zeros
self.empty_embedding = self.add_weight(
name=f'{self.name}_empty_embedding',
shape=[self.units],
initializer=INIT_ZEROS,
)
# Embedding
self.dense = tf.keras.Sequential([
tf.keras.layers.Dense(self.units, name=f'{self.name}_dense_1', use_bias=False,
kernel_initializer=INIT_GLOROT_UNIFORM, activation=GELU), # Can change activation
tf.keras.layers.Dense(self.units, name=f'{self.name}_dense_2', use_bias=False,
kernel_initializer=INIT_HE_UNIFORM),
], name=f'{self.name}_dense')
def call(self, x):
return tf.where(
# Checks whether landmark is missing in frame
tf.reduce_sum(x, axis=2, keepdims=True) == 0,
# If so, the empty embedding is used
self.empty_embedding,
# Otherwise the landmark data is embedded
self.dense(x),
)
def get_config(self):
config = super().get_config()
config.update({"units": self.units, "name": self.name})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
class EncoderTransformerBlock(tf.keras.layers.Layer):
def __init__(self, units, num_heads, mlp_ratio, mha_dropout_ratio, mlp_dropout_ratio, **kwargs):
super(EncoderTransformerBlock, self).__init__(**kwargs)
self.layer_norm_1 = tf.keras.layers.LayerNormalization(epsilon=LAYER_NORM_EPS)
self.mha = MultiHeadAttention(units, num_heads, mha_dropout_ratio)
self.layer_norm_2 = tf.keras.layers.LayerNormalization(epsilon=LAYER_NORM_EPS)
self.mlp = tf.keras.Sequential([
tf.keras.layers.Dense(units * mlp_ratio, activation=GELU, kernel_initializer=INIT_GLOROT_UNIFORM,
use_bias=False),
tf.keras.layers.Dropout(mlp_dropout_ratio),
tf.keras.layers.Dense(units, kernel_initializer=INIT_HE_UNIFORM, use_bias=False),
])
def call(self, inputs, attention_mask, training=False):
x = self.layer_norm_1(inputs + self.mha(inputs, inputs, inputs, attention_mask=attention_mask))
x = self.layer_norm_2(x + self.mlp(x))
return x
def get_config(self):
config = super().get_config()
config.update({"units": self.units, "num_heads": self.num_heads, "mlp_ratio": self.mlp_ratio,
"mha_dropout_ratio": self.mha_dropout_ratio, "mlp_dropout_ratio": self.mlp_dropout_ratio})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
# replaced softmax with softmax layer to support masked softmax
def scaled_dot_product(q, k, v, softmax, attention_mask):
# calculates Q . K(transpose)
qkt = tf.matmul(q, k, transpose_b=True)
# calculates scaling factor
dk = tf.math.sqrt(tf.cast(q.shape[-1], dtype=tf.float32))
scaled_qkt = qkt / dk
softmax = softmax(scaled_qkt, mask=attention_mask)
z = tf.matmul(softmax, v)
# shape: (m,Tx,depth), same shape as q,k,v
return z
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_of_heads, dropout, d_out=None):
super(MultiHeadAttention, self).__init__()
self.d_model = d_model
self.num_of_heads = num_of_heads
self.depth = d_model // num_of_heads # Can change
self.wq = [tf.keras.layers.Dense(self.depth, use_bias=False) for i in
range(num_of_heads)] # depth//2 isn't common, we can try different numbers
self.wk = [tf.keras.layers.Dense(self.depth, use_bias=False) for i in range(num_of_heads)]
self.wv = [tf.keras.layers.Dense(self.depth, use_bias=False) for i in range(num_of_heads)]
self.softmax = tf.keras.layers.Softmax()
self.do = tf.keras.layers.Dropout(dropout)
self.supports_masking = True
self.wo = tf.keras.layers.Dense(d_model if d_out is None else d_out, use_bias=False)
def call(self, q, k, v, attention_mask=None, training=False):
multi_attn = []
for i in range(self.num_of_heads):
Q = self.wq[i](q)
K = self.wk[i](k)
V = self.wv[i](v)
multi_attn.append(scaled_dot_product(Q, K, V, self.softmax, attention_mask))
multi_head = tf.concat(multi_attn, axis=-1)
multi_head_attention = self.wo(multi_head)
multi_head_attention = self.do(multi_head_attention, training=training)
return multi_head_attention
def get_config(self):
config = super().get_config()
config.update({"d_model": self.d_model, "num_of_heads": self.num_of_heads, "dropout": self.dropout})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
class DecoderTransformerBlock(tf.keras.layers.Layer):
def __init__(self, units, num_heads, mlp_ratio, mha_dropout_ratio, mlp_dropout_ratio, **kwargs):
super(DecoderTransformerBlock, self).__init__(**kwargs)
self.layer_norm_1 = tf.keras.layers.LayerNormalization(epsilon=LAYER_NORM_EPS)
self.mha = MultiHeadAttention(units, num_heads, mha_dropout_ratio)
self.layer_norm_2 = tf.keras.layers.LayerNormalization(epsilon=LAYER_NORM_EPS)
self.mlp = tf.keras.Sequential([
tf.keras.layers.Dense(units * mlp_ratio, activation=GELU, kernel_initializer=INIT_GLOROT_UNIFORM,
use_bias=False),
tf.keras.layers.Dropout(mlp_dropout_ratio),
tf.keras.layers.Dense(units, kernel_initializer=INIT_HE_UNIFORM, use_bias=False),
])
def call(self, inputs, encoder_outputs, attention_mask, training=False):
x = self.layer_norm_1(
inputs + self.mha(inputs, encoder_outputs, encoder_outputs, attention_mask=attention_mask))
x = self.layer_norm_2(x + self.mlp(x))
return x
def get_config(self):
config = super().get_config()
config.update({"units": self.units, "num_heads": self.num_heads, "mlp_ratio": self.mlp_ratio,
"mha_dropout_ratio": self.mha_dropout_ratio, "mlp_dropout_ratio": self.mlp_dropout_ratio})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
custom_objects = {'Embedding': Embedding,
'Encoder': Encoder,
'Decoder': Decoder,
'LandmarkEmbedding': LandmarkEmbedding,
'EncoderTransformerBlock': EncoderTransformerBlock,
'MultiHeadAttention': MultiHeadAttention,
'DecoderTransformerBlock': DecoderTransformerBlock}
# load json and create model
model_archeticture_file_path = os.path.join(current_directory, 'model_architecture.json')
json_file = open(model_archeticture_file_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
# load model from JSON file
loaded_model = model_from_json(loaded_model_json, custom_objects=custom_objects)
# load weights into the new model
model_weights_file_path = os.path.join(current_directory, 'model.h5')
loaded_model.load_weights(model_weights_file_path)
# loaded_model.summary(expand_nested=True, show_trainable=True, )
|