Spaces:
Runtime error
Runtime error
Arijit-hazra
commited on
Commit
•
af10606
1
Parent(s):
2ecfc1e
Upload 6 files
Browse files- .gitattributes +1 -0
- load_model.py +363 -0
- model/captioner_weights.data-00000-of-00001 +3 -0
- model/captioner_weights.index +0 -0
- model/checkpoint +2 -0
- model/output_layer.pkl +3 -0
- model/tokenizer.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
model/captioner_weights.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
load_model.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### IMPORTS
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import einops
|
6 |
+
import numpy as np
|
7 |
+
import tqdm
|
8 |
+
|
9 |
+
import collections
|
10 |
+
import re
|
11 |
+
import string
|
12 |
+
import pickle
|
13 |
+
|
14 |
+
print("import complete")
|
15 |
+
#=========================================================================================================================
|
16 |
+
### UTILITY FUNCTIONS
|
17 |
+
#=========================================================================================================================
|
18 |
+
|
19 |
+
IMAGE_SHAPE=(224, 224, 3)
|
20 |
+
|
21 |
+
@tf.keras.utils.register_keras_serializable()
|
22 |
+
def custom_standardization(s):
|
23 |
+
s = tf.strings.lower(s)
|
24 |
+
s = tf.strings.regex_replace(s, f'[{re.escape(string.punctuation)}]', '')
|
25 |
+
s = tf.strings.join(['[START]', s, '[END]'], separator=' ')
|
26 |
+
return s
|
27 |
+
|
28 |
+
def load_image(image_path):
|
29 |
+
img = tf.io.read_file(image_path)
|
30 |
+
img = tf.io.decode_jpeg(img, channels=3)
|
31 |
+
img = tf.image.resize(img, IMAGE_SHAPE[:-1])
|
32 |
+
return img
|
33 |
+
|
34 |
+
def load_image_obj(img):
|
35 |
+
img = tf.image.resize(img, IMAGE_SHAPE[:-1])
|
36 |
+
return img
|
37 |
+
|
38 |
+
def masked_loss(labels, preds):
|
39 |
+
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels, preds)
|
40 |
+
|
41 |
+
mask = (labels != 0) & (loss < 1e8)
|
42 |
+
mask = tf.cast(mask, loss.dtype)
|
43 |
+
|
44 |
+
loss = loss*mask
|
45 |
+
loss = tf.reduce_sum(loss)/tf.reduce_sum(mask)
|
46 |
+
return loss
|
47 |
+
|
48 |
+
def masked_acc(labels, preds):
|
49 |
+
mask = tf.cast(labels!=0, tf.float32)
|
50 |
+
preds = tf.argmax(preds, axis=-1)
|
51 |
+
labels = tf.cast(labels, tf.int64)
|
52 |
+
match = tf.cast(preds == labels, mask.dtype)
|
53 |
+
acc = tf.reduce_sum(match*mask)/tf.reduce_sum(mask)
|
54 |
+
return acc
|
55 |
+
|
56 |
+
print("utility complete")
|
57 |
+
#=========================================================================================================================
|
58 |
+
### MODEL CLASS
|
59 |
+
#=========================================================================================================================
|
60 |
+
|
61 |
+
mobilenet = tf.keras.applications.MobileNetV3Small(
|
62 |
+
input_shape=IMAGE_SHAPE,
|
63 |
+
include_top=False,
|
64 |
+
include_preprocessing=True)
|
65 |
+
mobilenet.trainable=False
|
66 |
+
|
67 |
+
class SeqEmbedding(tf.keras.layers.Layer):
|
68 |
+
def __init__(self, vocab_size, max_length, depth):
|
69 |
+
super().__init__()
|
70 |
+
self.pos_embedding = tf.keras.layers.Embedding(input_dim=max_length, output_dim=depth)
|
71 |
+
|
72 |
+
self.token_embedding = tf.keras.layers.Embedding(
|
73 |
+
input_dim=vocab_size,
|
74 |
+
output_dim=depth,
|
75 |
+
mask_zero=True)
|
76 |
+
|
77 |
+
self.add = tf.keras.layers.Add()
|
78 |
+
|
79 |
+
|
80 |
+
def call(self, seq):
|
81 |
+
seq = self.token_embedding(seq) # (batch, seq, depth)
|
82 |
+
|
83 |
+
x = tf.range(tf.shape(seq)[1]) # (seq)
|
84 |
+
x = x[tf.newaxis, :] # (1, seq)
|
85 |
+
x = self.pos_embedding(x) # (1, seq, depth)
|
86 |
+
|
87 |
+
return self.add([seq,x])
|
88 |
+
|
89 |
+
class CausalSelfAttention(tf.keras.layers.Layer):
|
90 |
+
def __init__(self, **kwargs):
|
91 |
+
super().__init__()
|
92 |
+
self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
|
93 |
+
# Use Add instead of + so the keras mask propagates through.
|
94 |
+
self.add = tf.keras.layers.Add()
|
95 |
+
self.layernorm = tf.keras.layers.LayerNormalization()
|
96 |
+
|
97 |
+
|
98 |
+
def call(self, x):
|
99 |
+
attn = self.mha(query=x, value=x,
|
100 |
+
use_causal_mask=True)
|
101 |
+
x = self.add([x, attn])
|
102 |
+
return self.layernorm(x)
|
103 |
+
|
104 |
+
class CrossAttention(tf.keras.layers.Layer):
|
105 |
+
def __init__(self,**kwargs):
|
106 |
+
super().__init__()
|
107 |
+
self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
|
108 |
+
self.add = tf.keras.layers.Add()
|
109 |
+
self.layernorm = tf.keras.layers.LayerNormalization()
|
110 |
+
|
111 |
+
def call(self, x, y, **kwargs):
|
112 |
+
attn, attention_scores = self.mha(
|
113 |
+
query=x, value=y,
|
114 |
+
return_attention_scores=True)
|
115 |
+
|
116 |
+
self.last_attention_scores = attention_scores
|
117 |
+
|
118 |
+
x = self.add([x, attn])
|
119 |
+
return self.layernorm(x)
|
120 |
+
|
121 |
+
class FeedForward(tf.keras.layers.Layer):
|
122 |
+
def __init__(self, units, dropout_rate=0.1):
|
123 |
+
super().__init__()
|
124 |
+
self.seq = tf.keras.Sequential([
|
125 |
+
tf.keras.layers.Dense(units=2*units, activation='relu'),
|
126 |
+
tf.keras.layers.Dense(units=units),
|
127 |
+
tf.keras.layers.Dropout(rate=dropout_rate),
|
128 |
+
])
|
129 |
+
|
130 |
+
self.layernorm = tf.keras.layers.LayerNormalization()
|
131 |
+
|
132 |
+
def call(self, x):
|
133 |
+
x = x + self.seq(x)
|
134 |
+
return self.layernorm(x)
|
135 |
+
|
136 |
+
class DecoderLayer(tf.keras.layers.Layer):
|
137 |
+
def __init__(self, units, num_heads=1, dropout_rate=0.1):
|
138 |
+
super().__init__()
|
139 |
+
|
140 |
+
self.self_attention = CausalSelfAttention(num_heads=num_heads,
|
141 |
+
key_dim=units,
|
142 |
+
dropout=dropout_rate)
|
143 |
+
self.cross_attention = CrossAttention(num_heads=num_heads,
|
144 |
+
key_dim=units,
|
145 |
+
dropout=dropout_rate)
|
146 |
+
self.ff = FeedForward(units=units, dropout_rate=dropout_rate)
|
147 |
+
|
148 |
+
|
149 |
+
def call(self, inputs, training=False):
|
150 |
+
in_seq, out_seq = inputs
|
151 |
+
|
152 |
+
# Text input
|
153 |
+
out_seq = self.self_attention(out_seq)
|
154 |
+
|
155 |
+
out_seq = self.cross_attention(out_seq, in_seq)
|
156 |
+
|
157 |
+
self.last_attention_scores = self.cross_attention.last_attention_scores
|
158 |
+
|
159 |
+
out_seq = self.ff(out_seq)
|
160 |
+
|
161 |
+
return out_seq
|
162 |
+
|
163 |
+
class TokenOutput(tf.keras.layers.Layer):
|
164 |
+
def __init__(self, tokenizer, banned_tokens=('', '[UNK]', '[START]'), bias=None, **kwargs):
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
self.dense = tf.keras.layers.Dense(
|
168 |
+
units=tokenizer.vocabulary_size(), **kwargs)
|
169 |
+
self.tokenizer = tokenizer
|
170 |
+
self.banned_tokens = banned_tokens
|
171 |
+
|
172 |
+
self.bias = bias
|
173 |
+
|
174 |
+
def adapt(self, ds):
|
175 |
+
counts = collections.Counter()
|
176 |
+
vocab_dict = {name: id
|
177 |
+
for id, name in enumerate(self.tokenizer.get_vocabulary())}
|
178 |
+
|
179 |
+
for tokens in tqdm.tqdm(ds):
|
180 |
+
counts.update(tokens.numpy().flatten())
|
181 |
+
|
182 |
+
counts_arr = np.zeros(shape=(self.tokenizer.vocabulary_size(),))
|
183 |
+
counts_arr[np.array(list(counts.keys()), dtype=np.int32)] = list(counts.values())
|
184 |
+
|
185 |
+
counts_arr = counts_arr[:]
|
186 |
+
for token in self.banned_tokens:
|
187 |
+
counts_arr[vocab_dict[token]] = 0
|
188 |
+
|
189 |
+
total = counts_arr.sum()
|
190 |
+
p = counts_arr/total
|
191 |
+
p[counts_arr==0] = 1.0
|
192 |
+
log_p = np.log(p) # log(1) == 0
|
193 |
+
|
194 |
+
entropy = -(log_p*p).sum()
|
195 |
+
|
196 |
+
print()
|
197 |
+
print(f"Uniform entropy: {np.log(self.tokenizer.vocabulary_size()):0.2f}")
|
198 |
+
print(f"Marginal entropy: {entropy:0.2f}")
|
199 |
+
|
200 |
+
self.bias = log_p
|
201 |
+
self.bias[counts_arr==0] = -1e9
|
202 |
+
|
203 |
+
def call(self, x):
|
204 |
+
x = self.dense(x)
|
205 |
+
return x + self.bias
|
206 |
+
|
207 |
+
def get_config(self):
|
208 |
+
config = super(TokenOutput, self).get_config()
|
209 |
+
config.update({
|
210 |
+
"tokenizer": self.tokenizer,
|
211 |
+
"banned_tokens": self.banned_tokens,
|
212 |
+
"bias": self.bias,
|
213 |
+
"dense":self.dense
|
214 |
+
})
|
215 |
+
|
216 |
+
return config
|
217 |
+
|
218 |
+
class Captioner(tf.keras.Model):
|
219 |
+
@classmethod
|
220 |
+
def add_method(cls, fun):
|
221 |
+
setattr(cls, fun.__name__, fun)
|
222 |
+
return fun
|
223 |
+
|
224 |
+
def __init__(self, tokenizer, feature_extractor, output_layer, num_layers=1,
|
225 |
+
units=256, max_length=50, num_heads=1, dropout_rate=0.1):
|
226 |
+
super().__init__()
|
227 |
+
self.feature_extractor = feature_extractor
|
228 |
+
self.tokenizer = tokenizer
|
229 |
+
self.word_to_index = tf.keras.layers.StringLookup(
|
230 |
+
mask_token="",
|
231 |
+
vocabulary=tokenizer.get_vocabulary())
|
232 |
+
self.index_to_word = tf.keras.layers.StringLookup(
|
233 |
+
mask_token="",
|
234 |
+
vocabulary=tokenizer.get_vocabulary(),
|
235 |
+
invert=True)
|
236 |
+
|
237 |
+
self.seq_embedding = SeqEmbedding(
|
238 |
+
vocab_size=tokenizer.vocabulary_size(),
|
239 |
+
depth=units,
|
240 |
+
max_length=max_length)
|
241 |
+
|
242 |
+
self.decoder_layers = [
|
243 |
+
DecoderLayer(units, num_heads=num_heads, dropout_rate=dropout_rate)
|
244 |
+
for n in range(num_layers)]
|
245 |
+
|
246 |
+
self.output_layer = output_layer
|
247 |
+
|
248 |
+
def call(self, inputs):
|
249 |
+
image, txt = inputs
|
250 |
+
|
251 |
+
if image.shape[-1] == 3:
|
252 |
+
# Apply the feature-extractor, if you get an RGB image.
|
253 |
+
image = self.feature_extractor(image)
|
254 |
+
|
255 |
+
# Flatten the feature map
|
256 |
+
image = einops.rearrange(image, 'b h w c -> b (h w) c')
|
257 |
+
|
258 |
+
|
259 |
+
if txt.dtype == tf.string:
|
260 |
+
# Apply the tokenizer if you get string inputs.
|
261 |
+
txt = self.tokenizer(txt)
|
262 |
+
|
263 |
+
txt = self.seq_embedding(txt)
|
264 |
+
|
265 |
+
# Look at the image
|
266 |
+
for dec_layer in self.decoder_layers:
|
267 |
+
txt = dec_layer(inputs=(image, txt))
|
268 |
+
|
269 |
+
txt = self.output_layer(txt)
|
270 |
+
|
271 |
+
return txt
|
272 |
+
|
273 |
+
|
274 |
+
def simple_gen(self, image, temperature=1):
|
275 |
+
initial = self.word_to_index([['[START]']]) # (batch, sequence)
|
276 |
+
img_features = self.feature_extractor(image[tf.newaxis, ...])
|
277 |
+
|
278 |
+
tokens = initial # (batch, sequence)
|
279 |
+
for n in range(50):
|
280 |
+
preds = self((img_features, tokens)).numpy() # (batch, sequence, vocab)
|
281 |
+
preds = preds[:,-1, :] #(batch, vocab)
|
282 |
+
if temperature==0:
|
283 |
+
next = tf.argmax(preds, axis=-1)[:, tf.newaxis] # (batch, 1)
|
284 |
+
else:
|
285 |
+
next = tf.random.categorical(preds/temperature, num_samples=1) # (batch, 1)
|
286 |
+
tokens = tf.concat([tokens, next], axis=1) # (batch, sequence)
|
287 |
+
|
288 |
+
if next[0] == self.word_to_index('[END]'):
|
289 |
+
break
|
290 |
+
|
291 |
+
words = self.index_to_word(tokens[0, 1:-1])
|
292 |
+
result = tf.strings.reduce_join(words, axis=-1, separator=' ')
|
293 |
+
return result.numpy().decode()
|
294 |
+
|
295 |
+
# def get_config(self):
|
296 |
+
# config = super().get_config()
|
297 |
+
# config.update({"feature_extractor": self.feature_extractor,
|
298 |
+
# "tokenizer": self.tokenizer,
|
299 |
+
# "word_to_index": self.word_to_index,
|
300 |
+
# "index_to_word": self.index_to_word,
|
301 |
+
# "outputlayer": self.output_layer,
|
302 |
+
# "seq_embedding": self.seq_embedding,
|
303 |
+
# "decoder_layers": self.decoder_layers
|
304 |
+
# })
|
305 |
+
# return config
|
306 |
+
|
307 |
+
# def build_from_config(self, config):
|
308 |
+
# return super().build_from_config(config)
|
309 |
+
|
310 |
+
# model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
|
311 |
+
# loss=masked_loss,
|
312 |
+
# metrics=[masked_acc])
|
313 |
+
|
314 |
+
print("model complete")
|
315 |
+
#=========================================================================================================================
|
316 |
+
### LOAD FUNCTION
|
317 |
+
#=========================================================================================================================
|
318 |
+
|
319 |
+
def build():
|
320 |
+
filename = "model/tokenizer.pkl"
|
321 |
+
token_meta = pickle.load(open(filename, 'rb'))
|
322 |
+
tokenizer = tf.keras.layers.TextVectorization.from_config(token_meta["config"])
|
323 |
+
tokenizer.set_weights(token_meta['weights'])
|
324 |
+
print(tokenizer("bulid sentence"))
|
325 |
+
word_to_index = tf.keras.layers.StringLookup(
|
326 |
+
mask_token="",
|
327 |
+
vocabulary=tokenizer.get_vocabulary())
|
328 |
+
|
329 |
+
index_to_word = tf.keras.layers.StringLookup(
|
330 |
+
mask_token="",
|
331 |
+
vocabulary=tokenizer.get_vocabulary(),
|
332 |
+
invert=True)
|
333 |
+
|
334 |
+
output_layer = TokenOutput(tokenizer, banned_tokens=('', '[UNK]', '[START]'))
|
335 |
+
filename = "model/output_layer.pkl"
|
336 |
+
bias = pickle.load(open(filename, 'rb'))
|
337 |
+
output_layer.bias = bias
|
338 |
+
|
339 |
+
load_model = Captioner(tokenizer, feature_extractor=mobilenet, output_layer=output_layer,
|
340 |
+
units=256, dropout_rate=0.5, num_layers=2, num_heads=2)
|
341 |
+
load_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
|
342 |
+
loss=masked_loss,
|
343 |
+
metrics=[masked_acc])
|
344 |
+
|
345 |
+
image_url = 'https://tensorflow.org/images/surf.jpg'
|
346 |
+
image_path = tf.keras.utils.get_file('surf.jpg', origin=image_url)
|
347 |
+
image = load_image(image_path)
|
348 |
+
load_model.simple_gen(image)
|
349 |
+
|
350 |
+
path = "model/captioner_weights"
|
351 |
+
load_model.load_weights(path)
|
352 |
+
return load_model
|
353 |
+
|
354 |
+
# loaded_model = build()
|
355 |
+
print("loaded")
|
356 |
+
#=========================================================================================================================
|
357 |
+
### TEST RUN
|
358 |
+
#=========================================================================================================================
|
359 |
+
|
360 |
+
image_url = 'https://tensorflow.org/images/surf.jpg'
|
361 |
+
image_path = tf.keras.utils.get_file('surf.jpg', origin=image_url)
|
362 |
+
image = load_image(image_path)
|
363 |
+
|
model/captioner_weights.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fa754d28af355d673c5a5250a65eb9d95d9a5981c6a45f6b01a4f7c562b1bfd
|
3 |
+
size 80382098
|
model/captioner_weights.index
ADDED
Binary file (24.3 kB). View file
|
|
model/checkpoint
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
model_checkpoint_path: "captioner_weights"
|
2 |
+
all_model_checkpoint_paths: "captioner_weights"
|
model/output_layer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce05dcabab270cce9610dc02f1eceeee990839820ebfc315fd3e5f24c87920dd
|
3 |
+
size 48157
|
model/tokenizer.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36d04920b7dc008907947069ca75e03e3de98a13011cd97d1bbf66bdeef99093
|
3 |
+
size 81048
|