File size: 27,425 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-03-30
# description: Abstract Base Class for all types of deepfake datasets.

import sys

import lmdb

sys.path.append('.')

import os
import math
import yaml
import glob
import json

import numpy as np
from copy import deepcopy
import cv2
import random
from PIL import Image
from collections import defaultdict

import torch
from torch.autograd import Variable
from torch.utils import data
from torchvision import transforms as T

import albumentations as A

from .albu import IsotropicResize

FFpp_pool=['FaceForensics++','FaceShifter','DeepFakeDetection','FF-DF','FF-F2F','FF-FS','FF-NT']#

def all_in_pool(inputs,pool):
    for each in inputs:
        if each not in pool:
            return False
    return True


class DeepfakeAbstractBaseDataset(data.Dataset):
    """

    Abstract base class for all deepfake datasets.

    """
    def __init__(self, config=None, mode='train'):
        """Initializes the dataset object.



        Args:

            config (dict): A dictionary containing configuration parameters.

            mode (str): A string indicating the mode (train or test).



        Raises:

            NotImplementedError: If mode is not train or test.

        """
        
        # Set the configuration and mode
        self.config = config
        self.mode = mode
        self.compression = config['compression']
        self.frame_num = config['frame_num'][mode]

        # Check if 'video_mode' exists in config, otherwise set video_level to False
        self.video_level = config.get('video_mode', False)
        self.clip_size = config.get('clip_size', None)
        self.lmdb = config.get('lmdb', False)
        # Dataset dictionary
        self.image_list = []
        self.label_list = []
        
        # Set the dataset dictionary based on the mode
        if mode == 'train':
            dataset_list = config['train_dataset']
            # Training data should be collected together for training
            image_list, label_list = [], []
            for one_data in dataset_list:
                tmp_image, tmp_label, tmp_name = self.collect_img_and_label_for_one_dataset(one_data)
                image_list.extend(tmp_image)
                label_list.extend(tmp_label)
            if self.lmdb:
                if len(dataset_list)>1:
                    if all_in_pool(dataset_list,FFpp_pool):
                        lmdb_path = os.path.join(config['lmdb_dir'], f"FaceForensics++_lmdb")
                        self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
                    else:
                        raise ValueError('Training with multiple dataset and lmdb is not implemented yet.')
                else:
                    lmdb_path = os.path.join(config['lmdb_dir'], f"{dataset_list[0] if dataset_list[0] not in FFpp_pool else 'FaceForensics++'}_lmdb")
                    self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
        elif mode == 'test':
            one_data = config['test_dataset']
            # Test dataset should be evaluated separately. So collect only one dataset each time
            image_list, label_list, name_list = self.collect_img_and_label_for_one_dataset(one_data)
            if self.lmdb:
                lmdb_path = os.path.join(config['lmdb_dir'], f"{one_data}_lmdb" if one_data not in FFpp_pool else 'FaceForensics++_lmdb')
                self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
        else:
            raise NotImplementedError('Only train and test modes are supported.')

        assert len(image_list)!=0 and len(label_list)!=0, f"Collect nothing for {mode} mode!"
        self.image_list, self.label_list = image_list, label_list


        # Create a dictionary containing the image and label lists
        self.data_dict = {
            'image': self.image_list, 
            'label': self.label_list, 
        }
        
        self.transform = self.init_data_aug_method()
        
    def init_data_aug_method(self):
        trans = A.Compose([           
            A.HorizontalFlip(p=self.config['data_aug']['flip_prob']),
            A.Rotate(limit=self.config['data_aug']['rotate_limit'], p=self.config['data_aug']['rotate_prob']),
            A.GaussianBlur(blur_limit=self.config['data_aug']['blur_limit'], p=self.config['data_aug']['blur_prob']),
            A.OneOf([                
                IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
                IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR),
                IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
            ], p = 0 if self.config['with_landmark'] else 1),
            A.OneOf([
                A.RandomBrightnessContrast(brightness_limit=self.config['data_aug']['brightness_limit'], contrast_limit=self.config['data_aug']['contrast_limit']),
                A.FancyPCA(),
                A.HueSaturationValue()
            ], p=0.5),
            A.ImageCompression(quality_lower=self.config['data_aug']['quality_lower'], quality_upper=self.config['data_aug']['quality_upper'], p=0.5)
        ], 
            keypoint_params=A.KeypointParams(format='xy') if self.config['with_landmark'] else None
        )
        return trans

    def rescale_landmarks(self, landmarks, original_size=256, new_size=224):
        scale_factor = new_size / original_size
        rescaled_landmarks = landmarks * scale_factor
        return rescaled_landmarks


    def collect_img_and_label_for_one_dataset(self, dataset_name: str):
        """Collects image and label lists.



        Args:

            dataset_name (str): A list containing one dataset information. e.g., 'FF-F2F'



        Returns:

            list: A list of image paths.

            list: A list of labels.

        

        Raises:

            ValueError: If image paths or labels are not found.

            NotImplementedError: If the dataset is not implemented yet.

        """
        # Initialize the label and frame path lists
        label_list = []
        frame_path_list = []
        
        # Record video name for video-level metrics
        video_name_list = []

        # Try to get the dataset information from the JSON file
        if not os.path.exists(self.config['dataset_json_folder']):
            self.config['dataset_json_folder'] = self.config['dataset_json_folder'].replace('/Youtu_Pangu_Security_Public', '/Youtu_Pangu_Security/public')
        try:
            with open(os.path.join(self.config['dataset_json_folder'], dataset_name + '.json'), 'r') as f:
                dataset_info = json.load(f)
        except Exception as e:
            print(e)
            raise ValueError(f'dataset {dataset_name} not exist!')

        # If JSON file exists, do the following data collection
        # FIXME: ugly, need to be modified here.
        cp = None
        if dataset_name == 'FaceForensics++_c40':
            dataset_name = 'FaceForensics++'
            cp = 'c40'
        elif dataset_name == 'FF-DF_c40':
            dataset_name = 'FF-DF'
            cp = 'c40'
        elif dataset_name == 'FF-F2F_c40':
            dataset_name = 'FF-F2F'
            cp = 'c40'
        elif dataset_name == 'FF-FS_c40':
            dataset_name = 'FF-FS'
            cp = 'c40'
        elif dataset_name == 'FF-NT_c40':
            dataset_name = 'FF-NT'
            cp = 'c40'
        # Get the information for the current dataset
        for label in dataset_info[dataset_name]:
            sub_dataset_info = dataset_info[dataset_name][label][self.mode]
            # Special case for FaceForensics++ and DeepFakeDetection, choose the compression type
            if cp == None and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']:
                sub_dataset_info = sub_dataset_info[self.compression]
            elif cp == 'c40' and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']:
                sub_dataset_info = sub_dataset_info['c40']

            # Iterate over the videos in the dataset
            for video_name, video_info in sub_dataset_info.items():
                # Unique video name
                unique_video_name = video_info['label'] + '_' + video_name

                # Get the label and frame paths for the current video
                if video_info['label'] not in self.config['label_dict']:
                    raise ValueError(f'Label {video_info["label"]} is not found in the configuration file.')
                label = self.config['label_dict'][video_info['label']]
                frame_paths = video_info['frames']
                # sorted video path to the lists
                if '\\' in frame_paths[0]:
                    frame_paths = sorted(frame_paths, key=lambda x: int(x.split('\\')[-1].split('.')[0]))
                else:
                    frame_paths = sorted(frame_paths, key=lambda x: int(x.split('/')[-1].split('.')[0]))

                # Consider the case when the actual number of frames (e.g., 270) is larger than the specified (i.e., self.frame_num=32)
                # In this case, we select self.frame_num frames from the original 270 frames
                total_frames = len(frame_paths)
                if self.frame_num < total_frames:
                    total_frames = self.frame_num
                    if self.video_level:
                        # Select clip_size continuous frames
                        start_frame = random.randint(0, total_frames - self.frame_num) if self.mode == 'train' else 0
                        frame_paths = frame_paths[start_frame:start_frame + self.frame_num]  # update total_frames
                    else:
                        # Select self.frame_num frames evenly distributed throughout the video
                        step = total_frames // self.frame_num
                        frame_paths = [frame_paths[i] for i in range(0, total_frames, step)][:self.frame_num]
                
                # If video-level methods, crop clips from the selected frames if needed
                if self.video_level:
                    if self.clip_size is None:
                        raise ValueError('clip_size must be specified when video_level is True.')
                    # Check if the number of total frames is greater than or equal to clip_size
                    if total_frames >= self.clip_size:
                        # Initialize an empty list to store the selected continuous frames
                        selected_clips = []

                        # Calculate the number of clips to select
                        num_clips = total_frames // self.clip_size

                        if num_clips > 1:
                            # Calculate the step size between each clip
                            clip_step = (total_frames - self.clip_size) // (num_clips - 1)

                            # Select clip_size continuous frames from each part of the video
                            for i in range(num_clips):
                                # Ensure start_frame + self.clip_size - 1 does not exceed the index of the last frame
                                start_frame = random.randrange(i * clip_step, min((i + 1) * clip_step, total_frames - self.clip_size + 1)) if self.mode == 'train' else i * clip_step
                                continuous_frames = frame_paths[start_frame:start_frame + self.clip_size]
                                assert len(continuous_frames) == self.clip_size, 'clip_size is not equal to the length of frame_path_list'
                                selected_clips.append(continuous_frames)

                        else:
                            start_frame = random.randrange(0, total_frames - self.clip_size + 1) if self.mode == 'train' else 0
                            continuous_frames = frame_paths[start_frame:start_frame + self.clip_size]
                            assert len(continuous_frames)==self.clip_size, 'clip_size is not equal to the length of frame_path_list'
                            selected_clips.append(continuous_frames)

                        # Append the list of selected clips and append the label
                        label_list.extend([label] * len(selected_clips))
                        frame_path_list.extend(selected_clips)
                        # video name save
                        video_name_list.extend([unique_video_name] * len(selected_clips))

                    else:
                        print(f"Skipping video {unique_video_name} because it has less than clip_size ({self.clip_size}) frames ({total_frames}).")
                
                # Otherwise, extend the label and frame paths to the lists according to the number of frames
                else:
                    # Extend the label and frame paths to the lists according to the number of frames
                    label_list.extend([label] * total_frames)
                    frame_path_list.extend(frame_paths)
                    # video name save
                    video_name_list.extend([unique_video_name] * len(frame_paths))
            
        # Shuffle the label and frame path lists in the same order
        shuffled = list(zip(label_list, frame_path_list, video_name_list))
        random.shuffle(shuffled)
        label_list, frame_path_list, video_name_list = zip(*shuffled)
        
        return frame_path_list, label_list, video_name_list

     
    def load_rgb(self, file_path):
        """

        Load an RGB image from a file path and resize it to a specified resolution.



        Args:

            file_path: A string indicating the path to the image file.



        Returns:

            An Image object containing the loaded and resized image.



        Raises:

            ValueError: If the loaded image is None.

        """
        size = self.config['resolution'] # if self.mode == "train" else self.config['resolution']
        if not self.lmdb:
            if not file_path[0] == '.':
                file_path =  f'{self.config["rgb_dir"]}'+file_path
            assert os.path.exists(file_path), f"{file_path} does not exist"
            img = cv2.imread(file_path)
            if img is None:
                raise ValueError('Loaded image is None: {}'.format(file_path))
        elif self.lmdb:
            with self.env.begin(write=False) as txn:
                # transfer the path format from rgb-path to lmdb-key
                if file_path[0]=='.':
                    file_path=file_path.replace('./datasets\\','')

                image_bin = txn.get(file_path.encode())
                image_buf = np.frombuffer(image_bin, dtype=np.uint8)
                img = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
        return Image.fromarray(np.array(img, dtype=np.uint8))


    def load_mask(self, file_path):
        """

        Load a binary mask image from a file path and resize it to a specified resolution.



        Args:

            file_path: A string indicating the path to the mask file.



        Returns:

            A numpy array containing the loaded and resized mask.



        Raises:

            None.

        """
        size = self.config['resolution']
        if file_path is None:
            return np.zeros((size, size, 1))
        if not self.lmdb:
            if not file_path[0] == '.':
                file_path =  f'./{self.config["rgb_dir"]}\\'+file_path
            if os.path.exists(file_path):
                mask = cv2.imread(file_path, 0)
                if mask is None:
                    mask = np.zeros((size, size))
            else:
                return np.zeros((size, size, 1))
        else:
            with self.env.begin(write=False) as txn:
                # transfer the path format from rgb-path to lmdb-key
                if file_path[0]=='.':
                    file_path=file_path.replace('./datasets\\','')

                image_bin = txn.get(file_path.encode())
                if image_bin is None:
                    mask = np.zeros((size, size,3))
                else:
                    image_buf = np.frombuffer(image_bin, dtype=np.uint8)
                    # cv2.IMREAD_GRAYSCALE为灰度图,cv2.IMREAD_COLOR为彩色图
                    mask = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
        mask = cv2.resize(mask, (size, size)) / 255
        mask = np.expand_dims(mask, axis=2)
        return np.float32(mask)

    def load_landmark(self, file_path):
        """

        Load 2D facial landmarks from a file path.



        Args:

            file_path: A string indicating the path to the landmark file.



        Returns:

            A numpy array containing the loaded landmarks.



        Raises:

            None.

        """
        if file_path is None:
            return np.zeros((81, 2))
        if not self.lmdb:
            if not file_path[0] == '.':
                file_path =  f'./{self.config["rgb_dir"]}\\'+file_path
            if os.path.exists(file_path):
                landmark = np.load(file_path)
            else:
                return np.zeros((81, 2))
        else:
            with self.env.begin(write=False) as txn:
                # transfer the path format from rgb-path to lmdb-key
                if file_path[0]=='.':
                    file_path=file_path.replace('./datasets\\','')
                binary = txn.get(file_path.encode())
                landmark = np.frombuffer(binary, dtype=np.uint32).reshape((81, 2))
                landmark=self.rescale_landmarks(np.float32(landmark), original_size=256, new_size=self.config['resolution'])
        return landmark

    def to_tensor(self, img):
        """

        Convert an image to a PyTorch tensor.

        """
        return T.ToTensor()(img)

    def normalize(self, img):
        """

        Normalize an image.

        """
        mean = self.config['mean']
        std = self.config['std']
        normalize = T.Normalize(mean=mean, std=std)
        return normalize(img)

    def data_aug(self, img, landmark=None, mask=None, augmentation_seed=None):
        """

        Apply data augmentation to an image, landmark, and mask.



        Args:

            img: An Image object containing the image to be augmented.

            landmark: A numpy array containing the 2D facial landmarks to be augmented.

            mask: A numpy array containing the binary mask to be augmented.



        Returns:

            The augmented image, landmark, and mask.

        """

        # Set the seed for the random number generator
        if augmentation_seed is not None:
            random.seed(augmentation_seed)
            np.random.seed(augmentation_seed)
        
        # Create a dictionary of arguments
        kwargs = {'image': img}
        
        # Check if the landmark and mask are not None
        if landmark is not None:
            kwargs['keypoints'] = landmark
            kwargs['keypoint_params'] = A.KeypointParams(format='xy')
        if mask is not None:
            mask = mask.squeeze(2)
            if mask.max() > 0:
                kwargs['mask'] = mask

        # Apply data augmentation
        transformed = self.transform(**kwargs)
        
        # Get the augmented image, landmark, and mask
        augmented_img = transformed['image']
        augmented_landmark = transformed.get('keypoints')
        augmented_mask = transformed.get('mask',mask)

        # Convert the augmented landmark to a numpy array
        if augmented_landmark is not None:
            augmented_landmark = np.array(augmented_landmark)

        # Reset the seeds to ensure different transformations for different videos
        if augmentation_seed is not None:
            random.seed()
            np.random.seed()

        return augmented_img, augmented_landmark, augmented_mask

    def __getitem__(self, index, no_norm=False):
        """

        Returns the data point at the given index.



        Args:

            index (int): The index of the data point.



        Returns:

            A tuple containing the image tensor, the label tensor, the landmark tensor,

            and the mask tensor.

        """
        # Get the image paths and label
        image_paths = self.data_dict['image'][index]
        label = self.data_dict['label'][index]

        if not isinstance(image_paths, list):
            image_paths = [image_paths]  # for the image-level IO, only one frame is used

        image_tensors = []
        landmark_tensors = []
        mask_tensors = []
        augmentation_seed = None

        for image_path in image_paths:
            # Initialize a new seed for data augmentation at the start of each video
            if self.video_level and image_path == image_paths[0]:
                augmentation_seed = random.randint(0, 2**32 - 1)

            # Get the mask and landmark paths
            mask_path = image_path.replace('frames', 'masks')  # Use .png for mask
            landmark_path = image_path.replace('frames', 'landmarks').replace('.png', '.npy')  # Use .npy for landmark

            # Load the image
            try:
                image = self.load_rgb(image_path)
            except Exception as e:
                # Skip this image and return the first one
                print(f"Error loading image at index {index}: {e}")
                return self.__getitem__(0)
            image = np.array(image)  # Convert to numpy array for data augmentation

            # Load mask and landmark (if needed)
            if self.config['with_mask']:
                mask = self.load_mask(mask_path)
            else:
                mask = None
            if self.config['with_landmark']:
                landmarks = self.load_landmark(landmark_path)
            else:
                landmarks = None

            # Do Data Augmentation
            if self.mode == 'train' and self.config['use_data_augmentation']:
                image_trans, landmarks_trans, mask_trans = self.data_aug(image, landmarks, mask, augmentation_seed)
            else:
                image_trans, landmarks_trans, mask_trans = deepcopy(image), deepcopy(landmarks), deepcopy(mask)
            

            # To tensor and normalize
            if not no_norm:
                image_trans = self.normalize(self.to_tensor(image_trans))
                if self.config['with_landmark']:
                    landmarks_trans = torch.from_numpy(landmarks)
                if self.config['with_mask']:
                    mask_trans = torch.from_numpy(mask_trans)

            image_tensors.append(image_trans)
            landmark_tensors.append(landmarks_trans)
            mask_tensors.append(mask_trans)

        if self.video_level:
            # Stack image tensors along a new dimension (time)
            image_tensors = torch.stack(image_tensors, dim=0)
            # Stack landmark and mask tensors along a new dimension (time)
            if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors):
                landmark_tensors = torch.stack(landmark_tensors, dim=0)
            if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
                mask_tensors = torch.stack(mask_tensors, dim=0)
        else:
            # Get the first image tensor
            image_tensors = image_tensors[0]
            # Get the first landmark and mask tensors
            if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors):
                landmark_tensors = landmark_tensors[0]
            if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
                mask_tensors = mask_tensors[0]

        return image_tensors, label, landmark_tensors, mask_tensors
    
    @staticmethod
    def collate_fn(batch):
        """

        Collate a batch of data points.



        Args:

            batch (list): A list of tuples containing the image tensor, the label tensor,

                          the landmark tensor, and the mask tensor.



        Returns:

            A tuple containing the image tensor, the label tensor, the landmark tensor,

            and the mask tensor.

        """
        # Separate the image, label, landmark, and mask tensors
        images, labels, landmarks, masks = zip(*batch)
        
        # Stack the image, label, landmark, and mask tensors
        images = torch.stack(images, dim=0)
        labels = torch.LongTensor(labels)
        
        # Special case for landmarks and masks if they are None
        if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmarks):
            landmarks = torch.stack(landmarks, dim=0)
        else:
            landmarks = None

        if not any(m is None or (isinstance(m, list) and None in m) for m in masks):
            masks = torch.stack(masks, dim=0)
        else:
            masks = None

        # Create a dictionary of the tensors
        data_dict = {}
        data_dict['image'] = images
        data_dict['label'] = labels
        data_dict['landmark'] = landmarks
        data_dict['mask'] = masks
        return data_dict

    def __len__(self):
        """

        Return the length of the dataset.



        Args:

            None.



        Returns:

            An integer indicating the length of the dataset.



        Raises:

            AssertionError: If the number of images and labels in the dataset are not equal.

        """
        assert len(self.image_list) == len(self.label_list), 'Number of images and labels are not equal'
        return len(self.image_list)


if __name__ == "__main__":
    with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/video_baseline.yaml', 'r') as f:
        config = yaml.safe_load(f)
    train_set = DeepfakeAbstractBaseDataset(
                config = config,
                mode = 'train', 
            )
    train_data_loader = \
        torch.utils.data.DataLoader(
            dataset=train_set,
            batch_size=config['train_batchSize'],
            shuffle=True, 
            num_workers=0,
            collate_fn=train_set.collate_fn,
        )
    from tqdm import tqdm
    for iteration, batch in enumerate(tqdm(train_data_loader)):
        # print(iteration)
        ...
        # if iteration > 10:
        #     break