File size: 7,141 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy

from .umeyama import umeyama
from numpy.linalg import inv
import cv2

mean_face_x = numpy.array([
0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
0.553364, 0.490127, 0.42689 ])

mean_face_y = numpy.array([
0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
0.784792, 0.824182, 0.831803, 0.824182 ])

landmarks_2D = numpy.stack( [ mean_face_x, mean_face_y ], axis=1 )

def get_align_mat(face, size, should_align_eyes):
    mat_umeyama = umeyama(numpy.array(face.landmarks_as_xy()[17:]), landmarks_2D, True)[0:2]

    if should_align_eyes is False:
        return mat_umeyama

    mat_umeyama = mat_umeyama * size

    # Convert to matrix
    landmarks = numpy.matrix(face.landmarks_as_xy())

    # cv2 expects points to be in the form np.array([ [[x1, y1]], [[x2, y2]], ... ]), we'll expand the dim
    landmarks = numpy.expand_dims(landmarks, axis=1)

    # Align the landmarks using umeyama
    umeyama_landmarks = cv2.transform(landmarks, mat_umeyama, landmarks.shape)

    # Determine a rotation matrix to align eyes horizontally
    mat_align_eyes = align_eyes(umeyama_landmarks, size)

    # Extend the 2x3 transform matrices to 3x3 so we can multiply them
    # and combine them as one
    mat_umeyama = numpy.matrix(mat_umeyama)
    mat_umeyama.resize((3, 3))
    mat_align_eyes = numpy.matrix(mat_align_eyes)
    mat_align_eyes.resize((3, 3))
    mat_umeyama[2] = mat_align_eyes[2] = [0, 0, 1]

    # Combine the umeyama transform with the extra rotation matrix
    transform_mat = mat_align_eyes * mat_umeyama

    # Remove the extra row added, shape needs to be 2x3
    transform_mat = numpy.delete(transform_mat, 2, 0)
    transform_mat = transform_mat / size
    return transform_mat


from .face_blend import get_5_keypoint

def get_align_mat_new(src_lmk, tgt_lmk, size=256, should_align_eyes=False):
    mat_umeyama = umeyama(get_5_keypoint(src_lmk), get_5_keypoint(tgt_lmk), True)[0:2]
    # mat_umeyama = umeyama(numpy.array(src_lmk[17:]), numpy.array(tgt_lmk[17:]), True)[0:2]

    if should_align_eyes is False:
        return mat_umeyama

    mat_umeyama = mat_umeyama * size

    # Convert to matrix
    landmarks = numpy.matrix(face.landmarks_as_xy())

    # cv2 expects points to be in the form np.array([ [[x1, y1]], [[x2, y2]], ... ]), we'll expand the dim
    landmarks = numpy.expand_dims(landmarks, axis=1)

    # Align the landmarks using umeyama
    umeyama_landmarks = cv2.transform(landmarks, mat_umeyama, landmarks.shape)

    # Determine a rotation matrix to align eyes horizontally
    mat_align_eyes = align_eyes(umeyama_landmarks, size)

    # Extend the 2x3 transform matrices to 3x3 so we can multiply them
    # and combine them as one
    mat_umeyama = numpy.matrix(mat_umeyama)
    mat_umeyama.resize((3, 3))
    mat_align_eyes = numpy.matrix(mat_align_eyes)
    mat_align_eyes.resize((3, 3))
    mat_umeyama[2] = mat_align_eyes[2] = [0, 0, 1]

    # Combine the umeyama transform with the extra rotation matrix
    transform_mat = mat_align_eyes * mat_umeyama

    # Remove the extra row added, shape needs to be 2x3
    transform_mat = numpy.delete(transform_mat, 2, 0)
    transform_mat = transform_mat / size
    return transform_mat

# Code borrowed from https://github.com/jrosebr1/imutils/blob/d5cb29d02cf178c399210d5a139a821dfb0ae136/imutils/face_utils/helpers.py
"""

The MIT License (MIT)



Copyright (c) 2015-2016 Adrian Rosebrock, http://www.pyimagesearch.com



Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:



The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.



THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

"""

from collections import OrderedDict
import numpy as np
import cv2

# define a dictionary that maps the indexes of the facial
# landmarks to specific face regions
FACIAL_LANDMARKS_IDXS = OrderedDict([
    ("mouth", (48, 68)),
    ("right_eyebrow", (17, 22)),
    ("left_eyebrow", (22, 27)),
    ("right_eye", (36, 42)),
    ("left_eye", (42, 48)),
    ("nose", (27, 36)),
    ("jaw", (0, 17)),
    ("chin", (8, 11))
])

# Returns a rotation matrix that when applied to the 68 input facial landmarks
# results in landmarks with eyes aligned horizontally
def align_eyes(landmarks, size):
    desiredLeftEye = (0.35, 0.35) # (y, x) value
    desiredFaceWidth = desiredFaceHeight = size

    # extract the left and right eye (x, y)-coordinates
    (lStart, lEnd) = FACIAL_LANDMARKS_IDXS["left_eye"]
    (rStart, rEnd) = FACIAL_LANDMARKS_IDXS["right_eye"]
    leftEyePts = landmarks[lStart:lEnd]
    rightEyePts = landmarks[rStart:rEnd]

    # compute the center of mass for each eye
    leftEyeCenter = leftEyePts.mean(axis=0).astype("int")
    rightEyeCenter = rightEyePts.mean(axis=0).astype("int")

    # compute the angle between the eye centroids
    dY = rightEyeCenter[0,1] - leftEyeCenter[0,1]
    dX = rightEyeCenter[0,0] - leftEyeCenter[0,0]
    angle = np.degrees(np.arctan2(dY, dX)) - 180

    # compute center (x, y)-coordinates (i.e., the median point)
    # between the two eyes in the input image
    eyesCenter = ((leftEyeCenter[0,0] + rightEyeCenter[0,0]) // 2, (leftEyeCenter[0,1] + rightEyeCenter[0,1]) // 2)

    # grab the rotation matrix for rotating and scaling the face
    M = cv2.getRotationMatrix2D(eyesCenter, angle, 1.0)

    return M