File size: 14,905 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Created by: Kaede Shiohara
# Yamasaki Lab at The University of Tokyo
# [email protected]
# Copyright (c) 2021
# 3rd party softwares' licenses are noticed at https://github.com/mapooon/SelfBlendedImages/blob/master/LICENSE
import logging
import os
import pickle

import cv2
import numpy as np
import scipy as sp
import yaml
from skimage.measure import label, regionprops
import random
from PIL import Image
import sys
import albumentations as A
from torch.utils.data import DataLoader
from dataset.utils.bi_online_generation import random_get_hull
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
from dataset.pair_dataset import pairDataset
import torch

class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
    def apply(self, img, ratio_list=None, **params):
        if ratio_list is None:
            ratio_list = [2, 4]
        r = ratio_list[np.random.randint(len(ratio_list))]
        return self.randomdownscale(img, r)

    def randomdownscale(self, img, r):
        keep_ratio = True
        keep_input_shape = True
        H, W, C = img.shape

        img_ds = cv2.resize(img, (int(W / r), int(H / r)), interpolation=cv2.INTER_NEAREST)
        if keep_input_shape:
            img_ds = cv2.resize(img_ds, (W, H), interpolation=cv2.INTER_LINEAR)

        return img_ds


'''

from PIL import ImageDraw

# 创建一个可以在图像上绘制的对象

img_pil=Image.fromarray(img)

draw = ImageDraw.Draw(img_pil)



# 在图像上绘制点

for i, point in enumerate(landmark):

    x, y = point

    radius = 1  # 点的半径

    draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill="red")

    draw.text((x+radius+2, y-radius), str(i), fill="black")  # 在点旁边添加标签

img_pil.show()



'''

def alpha_blend(source, target, mask):
    mask_blured = get_blend_mask(mask)
    img_blended = (mask_blured * source + (1 - mask_blured) * target)
    return img_blended, mask_blured


def dynamic_blend(source, target, mask):
    mask_blured = get_blend_mask(mask)
    # worth consideration, 1 in the official paper, 0.25, 0.5, 0.75,1,1,1 in sbi.
    blend_list = [1, 1, 1]
    blend_ratio = blend_list[np.random.randint(len(blend_list))]
    mask_blured *= blend_ratio
    img_blended = (mask_blured * source + (1 - mask_blured) * target)
    return img_blended, mask_blured


def get_blend_mask(mask):
    H, W = mask.shape
    size_h = np.random.randint(192, 257)
    size_w = np.random.randint(192, 257)
    mask = cv2.resize(mask, (size_w, size_h))
    kernel_1 = random.randrange(5, 26, 2)
    kernel_1 = (kernel_1, kernel_1)
    kernel_2 = random.randrange(5, 26, 2)
    kernel_2 = (kernel_2, kernel_2)

    mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
    mask_blured = mask_blured / (mask_blured.max())
    mask_blured[mask_blured < 1] = 0

    mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5, 46))
    mask_blured = mask_blured / (mask_blured.max())
    mask_blured = cv2.resize(mask_blured, (W, H))
    return mask_blured.reshape((mask_blured.shape + (1,)))


def get_alpha_blend_mask(mask):
    kernel_list = [(11, 11), (9, 9), (7, 7), (5, 5), (3, 3)]
    blend_list = [0.25, 0.5, 0.75]
    kernel_idxs = random.choices(range(len(kernel_list)), k=2)
    blend_ratio = blend_list[random.sample(range(len(blend_list)), 1)[0]]
    mask_blured = cv2.GaussianBlur(mask, kernel_list[0], 0)
    # print(mask_blured.max())
    mask_blured[mask_blured < mask_blured.max()] = 0
    mask_blured[mask_blured > 0] = 1
    # mask_blured = mask
    mask_blured = cv2.GaussianBlur(mask_blured, kernel_list[kernel_idxs[1]], 0)
    mask_blured = mask_blured / (mask_blured.max())
    return mask_blured.reshape((mask_blured.shape + (1,)))


class I2GDataset(DeepfakeAbstractBaseDataset):
    def __init__(self, config=None, mode='train'):
        #config['GridShuffle']['p'] = 0
        super().__init__(config, mode)
        real_images_list = [img for img, label in zip(self.image_list, self.label_list) if label == 0]
        self.real_images_list = list(set(real_images_list))  #  de-duplicate since DF,F2F,FS,NT have same real images
        self.source_transforms = self.get_source_transforms()
        self.transforms = self.get_transforms()
        self.init_nearest()

    def init_nearest(self):
        if os.path.exists('training/lib/nearest_face_info.pkl'):
            with open('training/lib/nearest_face_info.pkl', 'rb') as f:
                face_info = pickle.load(f)
        self.face_info = face_info
        # Check if the dictionary has already been created
        if os.path.exists('training/lib/landmark_dict_ffall.pkl'):
            with open('training/lib/landmark_dict_ffall.pkl', 'rb') as f:
                landmark_dict = pickle.load(f)
        self.landmark_dict = landmark_dict

    def reorder_landmark(self, landmark):
        landmark = landmark.copy()  # 创建landmark的副本
        landmark_add = np.zeros((13, 2))
        for idx, idx_l in enumerate([77, 75, 76, 68, 69, 70, 71, 80, 72, 73, 79, 74, 78]):
            landmark_add[idx] = landmark[idx_l]
        landmark[68:] = landmark_add
        return landmark

    def hflip(self, img, mask=None, landmark=None, bbox=None):
        H, W = img.shape[:2]
        landmark = landmark.copy()
        if bbox is not None:
            bbox = bbox.copy()

        if landmark is not None:
            landmark_new = np.zeros_like(landmark)

            landmark_new[:17] = landmark[:17][::-1]
            landmark_new[17:27] = landmark[17:27][::-1]

            landmark_new[27:31] = landmark[27:31]
            landmark_new[31:36] = landmark[31:36][::-1]

            landmark_new[36:40] = landmark[42:46][::-1]
            landmark_new[40:42] = landmark[46:48][::-1]

            landmark_new[42:46] = landmark[36:40][::-1]
            landmark_new[46:48] = landmark[40:42][::-1]

            landmark_new[48:55] = landmark[48:55][::-1]
            landmark_new[55:60] = landmark[55:60][::-1]

            landmark_new[60:65] = landmark[60:65][::-1]
            landmark_new[65:68] = landmark[65:68][::-1]
            if len(landmark) == 68:
                pass
            elif len(landmark) == 81:
                landmark_new[68:81] = landmark[68:81][::-1]
            else:
                raise NotImplementedError
            landmark_new[:, 0] = W - landmark_new[:, 0]

        else:
            landmark_new = None

        if bbox is not None:
            bbox_new = np.zeros_like(bbox)
            bbox_new[0, 0] = bbox[1, 0]
            bbox_new[1, 0] = bbox[0, 0]
            bbox_new[:, 0] = W - bbox_new[:, 0]
            bbox_new[:, 1] = bbox[:, 1].copy()
            if len(bbox) > 2:
                bbox_new[2, 0] = W - bbox[3, 0]
                bbox_new[2, 1] = bbox[3, 1]
                bbox_new[3, 0] = W - bbox[2, 0]
                bbox_new[3, 1] = bbox[2, 1]
                bbox_new[4, 0] = W - bbox[4, 0]
                bbox_new[4, 1] = bbox[4, 1]
                bbox_new[5, 0] = W - bbox[6, 0]
                bbox_new[5, 1] = bbox[6, 1]
                bbox_new[6, 0] = W - bbox[5, 0]
                bbox_new[6, 1] = bbox[5, 1]
        else:
            bbox_new = None

        if mask is not None:
            mask = mask[:, ::-1]
        else:
            mask = None
        img = img[:, ::-1].copy()
        return img, mask, landmark_new, bbox_new



    def get_source_transforms(self):
        return A.Compose([
            A.Compose([
                A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
                A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
                                     val_shift_limit=(-0.3, 0.3), p=1),
                A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=1),
            ], p=1),

            A.OneOf([
                RandomDownScale(p=1),
                A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
            ], p=1),

        ], p=1.)

    def get_fg_bg(self, one_lmk_path):
        """

        Get foreground and background paths

        """
        bg_lmk_path = one_lmk_path
        # Randomly pick one from the nearest neighbors for the foreground
        if bg_lmk_path in self.face_info:
            fg_lmk_path = random.choice(self.face_info[bg_lmk_path])
        else:
            fg_lmk_path = bg_lmk_path
        return fg_lmk_path, bg_lmk_path

    def get_transforms(self):
        return A.Compose([

            A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
            A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
                                 val_shift_limit=(-0.3, 0.3), p=0.3),
            A.RandomBrightnessContrast(brightness_limit=(-0.3, 0.3), contrast_limit=(-0.3, 0.3), p=0.3),
            A.ImageCompression(quality_lower=40, quality_upper=100, p=0.5),

        ],
            additional_targets={f'image1': 'image'},
            p=1.)

    def randaffine(self, img, mask):
        f = A.Affine(
            translate_percent={'x': (-0.03, 0.03), 'y': (-0.015, 0.015)},
            scale=[0.95, 1 / 0.95],
            fit_output=False,
            p=1)

        g = A.ElasticTransform(
            alpha=50,
            sigma=7,
            alpha_affine=0,
            p=1,
        )

        transformed = f(image=img, mask=mask)
        img = transformed['image']

        mask = transformed['mask']
        transformed = g(image=img, mask=mask)
        mask = transformed['mask']
        return img, mask

    def __len__(self):
        return len(self.real_images_list)


    def colorTransfer(self, src, dst, mask):
        transferredDst = np.copy(dst)
        maskIndices = np.where(mask != 0)
        maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.float32)
        maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.float32)

        # Compute means and standard deviations
        meanSrc = np.mean(maskedSrc, axis=0)
        stdSrc = np.std(maskedSrc, axis=0)
        meanDst = np.mean(maskedDst, axis=0)
        stdDst = np.std(maskedDst, axis=0)

        # Perform color transfer
        maskedDst = (maskedDst - meanDst) * (stdSrc / stdDst) + meanSrc
        maskedDst = np.clip(maskedDst, 0, 255)

        # Copy the entire background into transferredDst
        transferredDst = np.copy(dst)
        # Now apply color transfer only to the masked region
        transferredDst[maskIndices[0], maskIndices[1]] = maskedDst.astype(np.uint8)

        return transferredDst



    def two_blending(self, img_bg, img_fg, landmark):
        H, W = len(img_bg), len(img_bg[0])
        if np.random.rand() < 0.25:
            landmark = landmark[:68]
        logging.disable(logging.FATAL)
        mask = random_get_hull(landmark, img_bg)
        logging.disable(logging.NOTSET)
        source = img_fg.copy()
        target = img_bg.copy()
        # if np.random.rand() < 0.5:
        #     source = self.source_transforms(image=source.astype(np.uint8))['image']
        # else:
        #     target = self.source_transforms(image=target.astype(np.uint8))['image']
        source_v2, mask_v2 = self.randaffine(source, mask)
        source_v3=self.colorTransfer(target,source_v2,mask_v2)
        img_blended, mask = dynamic_blend(source_v3, target, mask_v2)
        img_blended = img_blended.astype(np.uint8)
        img = img_bg.astype(np.uint8)

        return img, img_blended, mask.squeeze(2)


    def __getitem__(self, index):
        image_path_bg = self.real_images_list[index]
        label = 0

        # Get the mask and landmark paths
        landmark_path_bg = image_path_bg.replace('frames', 'landmarks').replace('.png', '.npy')  # Use .npy for landmark
        landmark_path_fg, landmark_path_bg = self.get_fg_bg(landmark_path_bg)
        image_path_fg = landmark_path_fg.replace('landmarks','frames').replace('.npy','.png')
        try:
            image_bg = self.load_rgb(image_path_bg)
            image_fg = self.load_rgb(image_path_fg)
        except Exception as e:
            # Skip this image and return the first one
            print(f"Error loading image at index {index}: {e}")
            return self.__getitem__(0)
        image_bg = np.array(image_bg)  # Convert to numpy array for data augmentation
        image_fg = np.array(image_fg)  # Convert to numpy array for data augmentation

        landmarks_bg = self.load_landmark(landmark_path_bg)
        landmarks_fg = self.load_landmark(landmark_path_fg)


        landmarks_bg = np.clip(landmarks_bg, 0, self.config['resolution'] - 1)
        landmarks_bg = self.reorder_landmark(landmarks_bg)

        img_r, img_f, mask_f = self.two_blending(image_bg.copy(), image_fg.copy(),landmarks_bg.copy())
        transformed = self.transforms(image=img_f.astype('uint8'), image1=img_r.astype('uint8'))
        img_f = transformed['image']
        img_r = transformed['image1']
        # img_f = img_f.transpose((2, 0, 1))
        # img_r = img_r.transpose((2, 0, 1))
        img_f = self.normalize(self.to_tensor(img_f))
        img_r = self.normalize(self.to_tensor(img_r))
        mask_f = self.to_tensor(mask_f)
        mask_r=torch.zeros_like(mask_f) # zeros or ones
        return img_f, img_r, mask_f,mask_r

    @staticmethod
    def collate_fn(batch):
        img_f, img_r, mask_f,mask_r = zip(*batch)
        data = {}
        fake_mask = torch.stack(mask_f,dim=0)
        real_mask = torch.stack(mask_r, dim=0)
        fake_images = torch.stack(img_f, dim=0)
        real_images = torch.stack(img_r, dim=0)
        data['image'] = torch.cat([real_images, fake_images], dim=0)
        data['label'] = torch.tensor([0] * len(img_r) + [1] * len(img_f))
        data['landmark'] = None
        data['mask'] = torch.cat([real_mask, fake_mask], dim=0)
        return data


if __name__ == '__main__':
    detector_path = r"./training/config/detector/xception.yaml"
    # weights_path = "./ckpts/xception/CDFv2/tb_v1/ov.pth"
    with open(detector_path, 'r') as f:
        config = yaml.safe_load(f)
    with open('./training/config/train_config.yaml', 'r') as f:
        config2 = yaml.safe_load(f)
    config2['data_manner'] = 'lmdb'
    config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
    config.update(config2)
    dataset = I2GDataset(config=config)
    batch_size = 2
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True,collate_fn=dataset.collate_fn)

    for i, batch in enumerate(dataloader):
        print(f"Batch {i}: {batch}")
        continue