File size: 14,905 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
# Created by: Kaede Shiohara
# Yamasaki Lab at The University of Tokyo
# [email protected]
# Copyright (c) 2021
# 3rd party softwares' licenses are noticed at https://github.com/mapooon/SelfBlendedImages/blob/master/LICENSE
import logging
import os
import pickle
import cv2
import numpy as np
import scipy as sp
import yaml
from skimage.measure import label, regionprops
import random
from PIL import Image
import sys
import albumentations as A
from torch.utils.data import DataLoader
from dataset.utils.bi_online_generation import random_get_hull
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
from dataset.pair_dataset import pairDataset
import torch
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
def apply(self, img, ratio_list=None, **params):
if ratio_list is None:
ratio_list = [2, 4]
r = ratio_list[np.random.randint(len(ratio_list))]
return self.randomdownscale(img, r)
def randomdownscale(self, img, r):
keep_ratio = True
keep_input_shape = True
H, W, C = img.shape
img_ds = cv2.resize(img, (int(W / r), int(H / r)), interpolation=cv2.INTER_NEAREST)
if keep_input_shape:
img_ds = cv2.resize(img_ds, (W, H), interpolation=cv2.INTER_LINEAR)
return img_ds
'''
from PIL import ImageDraw
# 创建一个可以在图像上绘制的对象
img_pil=Image.fromarray(img)
draw = ImageDraw.Draw(img_pil)
# 在图像上绘制点
for i, point in enumerate(landmark):
x, y = point
radius = 1 # 点的半径
draw.ellipse((x-radius, y-radius, x+radius, y+radius), fill="red")
draw.text((x+radius+2, y-radius), str(i), fill="black") # 在点旁边添加标签
img_pil.show()
'''
def alpha_blend(source, target, mask):
mask_blured = get_blend_mask(mask)
img_blended = (mask_blured * source + (1 - mask_blured) * target)
return img_blended, mask_blured
def dynamic_blend(source, target, mask):
mask_blured = get_blend_mask(mask)
# worth consideration, 1 in the official paper, 0.25, 0.5, 0.75,1,1,1 in sbi.
blend_list = [1, 1, 1]
blend_ratio = blend_list[np.random.randint(len(blend_list))]
mask_blured *= blend_ratio
img_blended = (mask_blured * source + (1 - mask_blured) * target)
return img_blended, mask_blured
def get_blend_mask(mask):
H, W = mask.shape
size_h = np.random.randint(192, 257)
size_w = np.random.randint(192, 257)
mask = cv2.resize(mask, (size_w, size_h))
kernel_1 = random.randrange(5, 26, 2)
kernel_1 = (kernel_1, kernel_1)
kernel_2 = random.randrange(5, 26, 2)
kernel_2 = (kernel_2, kernel_2)
mask_blured = cv2.GaussianBlur(mask, kernel_1, 0)
mask_blured = mask_blured / (mask_blured.max())
mask_blured[mask_blured < 1] = 0
mask_blured = cv2.GaussianBlur(mask_blured, kernel_2, np.random.randint(5, 46))
mask_blured = mask_blured / (mask_blured.max())
mask_blured = cv2.resize(mask_blured, (W, H))
return mask_blured.reshape((mask_blured.shape + (1,)))
def get_alpha_blend_mask(mask):
kernel_list = [(11, 11), (9, 9), (7, 7), (5, 5), (3, 3)]
blend_list = [0.25, 0.5, 0.75]
kernel_idxs = random.choices(range(len(kernel_list)), k=2)
blend_ratio = blend_list[random.sample(range(len(blend_list)), 1)[0]]
mask_blured = cv2.GaussianBlur(mask, kernel_list[0], 0)
# print(mask_blured.max())
mask_blured[mask_blured < mask_blured.max()] = 0
mask_blured[mask_blured > 0] = 1
# mask_blured = mask
mask_blured = cv2.GaussianBlur(mask_blured, kernel_list[kernel_idxs[1]], 0)
mask_blured = mask_blured / (mask_blured.max())
return mask_blured.reshape((mask_blured.shape + (1,)))
class I2GDataset(DeepfakeAbstractBaseDataset):
def __init__(self, config=None, mode='train'):
#config['GridShuffle']['p'] = 0
super().__init__(config, mode)
real_images_list = [img for img, label in zip(self.image_list, self.label_list) if label == 0]
self.real_images_list = list(set(real_images_list)) # de-duplicate since DF,F2F,FS,NT have same real images
self.source_transforms = self.get_source_transforms()
self.transforms = self.get_transforms()
self.init_nearest()
def init_nearest(self):
if os.path.exists('training/lib/nearest_face_info.pkl'):
with open('training/lib/nearest_face_info.pkl', 'rb') as f:
face_info = pickle.load(f)
self.face_info = face_info
# Check if the dictionary has already been created
if os.path.exists('training/lib/landmark_dict_ffall.pkl'):
with open('training/lib/landmark_dict_ffall.pkl', 'rb') as f:
landmark_dict = pickle.load(f)
self.landmark_dict = landmark_dict
def reorder_landmark(self, landmark):
landmark = landmark.copy() # 创建landmark的副本
landmark_add = np.zeros((13, 2))
for idx, idx_l in enumerate([77, 75, 76, 68, 69, 70, 71, 80, 72, 73, 79, 74, 78]):
landmark_add[idx] = landmark[idx_l]
landmark[68:] = landmark_add
return landmark
def hflip(self, img, mask=None, landmark=None, bbox=None):
H, W = img.shape[:2]
landmark = landmark.copy()
if bbox is not None:
bbox = bbox.copy()
if landmark is not None:
landmark_new = np.zeros_like(landmark)
landmark_new[:17] = landmark[:17][::-1]
landmark_new[17:27] = landmark[17:27][::-1]
landmark_new[27:31] = landmark[27:31]
landmark_new[31:36] = landmark[31:36][::-1]
landmark_new[36:40] = landmark[42:46][::-1]
landmark_new[40:42] = landmark[46:48][::-1]
landmark_new[42:46] = landmark[36:40][::-1]
landmark_new[46:48] = landmark[40:42][::-1]
landmark_new[48:55] = landmark[48:55][::-1]
landmark_new[55:60] = landmark[55:60][::-1]
landmark_new[60:65] = landmark[60:65][::-1]
landmark_new[65:68] = landmark[65:68][::-1]
if len(landmark) == 68:
pass
elif len(landmark) == 81:
landmark_new[68:81] = landmark[68:81][::-1]
else:
raise NotImplementedError
landmark_new[:, 0] = W - landmark_new[:, 0]
else:
landmark_new = None
if bbox is not None:
bbox_new = np.zeros_like(bbox)
bbox_new[0, 0] = bbox[1, 0]
bbox_new[1, 0] = bbox[0, 0]
bbox_new[:, 0] = W - bbox_new[:, 0]
bbox_new[:, 1] = bbox[:, 1].copy()
if len(bbox) > 2:
bbox_new[2, 0] = W - bbox[3, 0]
bbox_new[2, 1] = bbox[3, 1]
bbox_new[3, 0] = W - bbox[2, 0]
bbox_new[3, 1] = bbox[2, 1]
bbox_new[4, 0] = W - bbox[4, 0]
bbox_new[4, 1] = bbox[4, 1]
bbox_new[5, 0] = W - bbox[6, 0]
bbox_new[5, 1] = bbox[6, 1]
bbox_new[6, 0] = W - bbox[5, 0]
bbox_new[6, 1] = bbox[5, 1]
else:
bbox_new = None
if mask is not None:
mask = mask[:, ::-1]
else:
mask = None
img = img[:, ::-1].copy()
return img, mask, landmark_new, bbox_new
def get_source_transforms(self):
return A.Compose([
A.Compose([
A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
val_shift_limit=(-0.3, 0.3), p=1),
A.RandomBrightnessContrast(brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=1),
], p=1),
A.OneOf([
RandomDownScale(p=1),
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
], p=1),
], p=1.)
def get_fg_bg(self, one_lmk_path):
"""
Get foreground and background paths
"""
bg_lmk_path = one_lmk_path
# Randomly pick one from the nearest neighbors for the foreground
if bg_lmk_path in self.face_info:
fg_lmk_path = random.choice(self.face_info[bg_lmk_path])
else:
fg_lmk_path = bg_lmk_path
return fg_lmk_path, bg_lmk_path
def get_transforms(self):
return A.Compose([
A.RGBShift((-20, 20), (-20, 20), (-20, 20), p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3, 0.3), sat_shift_limit=(-0.3, 0.3),
val_shift_limit=(-0.3, 0.3), p=0.3),
A.RandomBrightnessContrast(brightness_limit=(-0.3, 0.3), contrast_limit=(-0.3, 0.3), p=0.3),
A.ImageCompression(quality_lower=40, quality_upper=100, p=0.5),
],
additional_targets={f'image1': 'image'},
p=1.)
def randaffine(self, img, mask):
f = A.Affine(
translate_percent={'x': (-0.03, 0.03), 'y': (-0.015, 0.015)},
scale=[0.95, 1 / 0.95],
fit_output=False,
p=1)
g = A.ElasticTransform(
alpha=50,
sigma=7,
alpha_affine=0,
p=1,
)
transformed = f(image=img, mask=mask)
img = transformed['image']
mask = transformed['mask']
transformed = g(image=img, mask=mask)
mask = transformed['mask']
return img, mask
def __len__(self):
return len(self.real_images_list)
def colorTransfer(self, src, dst, mask):
transferredDst = np.copy(dst)
maskIndices = np.where(mask != 0)
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.float32)
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.float32)
# Compute means and standard deviations
meanSrc = np.mean(maskedSrc, axis=0)
stdSrc = np.std(maskedSrc, axis=0)
meanDst = np.mean(maskedDst, axis=0)
stdDst = np.std(maskedDst, axis=0)
# Perform color transfer
maskedDst = (maskedDst - meanDst) * (stdSrc / stdDst) + meanSrc
maskedDst = np.clip(maskedDst, 0, 255)
# Copy the entire background into transferredDst
transferredDst = np.copy(dst)
# Now apply color transfer only to the masked region
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst.astype(np.uint8)
return transferredDst
def two_blending(self, img_bg, img_fg, landmark):
H, W = len(img_bg), len(img_bg[0])
if np.random.rand() < 0.25:
landmark = landmark[:68]
logging.disable(logging.FATAL)
mask = random_get_hull(landmark, img_bg)
logging.disable(logging.NOTSET)
source = img_fg.copy()
target = img_bg.copy()
# if np.random.rand() < 0.5:
# source = self.source_transforms(image=source.astype(np.uint8))['image']
# else:
# target = self.source_transforms(image=target.astype(np.uint8))['image']
source_v2, mask_v2 = self.randaffine(source, mask)
source_v3=self.colorTransfer(target,source_v2,mask_v2)
img_blended, mask = dynamic_blend(source_v3, target, mask_v2)
img_blended = img_blended.astype(np.uint8)
img = img_bg.astype(np.uint8)
return img, img_blended, mask.squeeze(2)
def __getitem__(self, index):
image_path_bg = self.real_images_list[index]
label = 0
# Get the mask and landmark paths
landmark_path_bg = image_path_bg.replace('frames', 'landmarks').replace('.png', '.npy') # Use .npy for landmark
landmark_path_fg, landmark_path_bg = self.get_fg_bg(landmark_path_bg)
image_path_fg = landmark_path_fg.replace('landmarks','frames').replace('.npy','.png')
try:
image_bg = self.load_rgb(image_path_bg)
image_fg = self.load_rgb(image_path_fg)
except Exception as e:
# Skip this image and return the first one
print(f"Error loading image at index {index}: {e}")
return self.__getitem__(0)
image_bg = np.array(image_bg) # Convert to numpy array for data augmentation
image_fg = np.array(image_fg) # Convert to numpy array for data augmentation
landmarks_bg = self.load_landmark(landmark_path_bg)
landmarks_fg = self.load_landmark(landmark_path_fg)
landmarks_bg = np.clip(landmarks_bg, 0, self.config['resolution'] - 1)
landmarks_bg = self.reorder_landmark(landmarks_bg)
img_r, img_f, mask_f = self.two_blending(image_bg.copy(), image_fg.copy(),landmarks_bg.copy())
transformed = self.transforms(image=img_f.astype('uint8'), image1=img_r.astype('uint8'))
img_f = transformed['image']
img_r = transformed['image1']
# img_f = img_f.transpose((2, 0, 1))
# img_r = img_r.transpose((2, 0, 1))
img_f = self.normalize(self.to_tensor(img_f))
img_r = self.normalize(self.to_tensor(img_r))
mask_f = self.to_tensor(mask_f)
mask_r=torch.zeros_like(mask_f) # zeros or ones
return img_f, img_r, mask_f,mask_r
@staticmethod
def collate_fn(batch):
img_f, img_r, mask_f,mask_r = zip(*batch)
data = {}
fake_mask = torch.stack(mask_f,dim=0)
real_mask = torch.stack(mask_r, dim=0)
fake_images = torch.stack(img_f, dim=0)
real_images = torch.stack(img_r, dim=0)
data['image'] = torch.cat([real_images, fake_images], dim=0)
data['label'] = torch.tensor([0] * len(img_r) + [1] * len(img_f))
data['landmark'] = None
data['mask'] = torch.cat([real_mask, fake_mask], dim=0)
return data
if __name__ == '__main__':
detector_path = r"./training/config/detector/xception.yaml"
# weights_path = "./ckpts/xception/CDFv2/tb_v1/ov.pth"
with open(detector_path, 'r') as f:
config = yaml.safe_load(f)
with open('./training/config/train_config.yaml', 'r') as f:
config2 = yaml.safe_load(f)
config2['data_manner'] = 'lmdb'
config['dataset_json_folder'] = 'preprocessing/dataset_json_v3'
config.update(config2)
dataset = I2GDataset(config=config)
batch_size = 2
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True,collate_fn=dataset.collate_fn)
for i, batch in enumerate(dataloader):
print(f"Batch {i}: {batch}")
continue
|