File size: 22,348 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
'''

# author: Zhiyuan Yan

# email: [email protected]

# date: 2023-03-30



The code is designed for Face X-ray.

'''

import os
import sys
import json
import pickle
import time

import lmdb
import numpy as np
import albumentations as A
import cv2
import random
from PIL import Image
from skimage.util import random_noise
from scipy import linalg
import heapq as hq
import lmdb
import torch
from torch.autograd import Variable
from torch.utils import data
from torchvision import transforms as T
import torchvision

from dataset.utils.face_blend import *
from dataset.utils.face_align import get_align_mat_new
from dataset.utils.color_transfer import color_transfer
from dataset.utils.faceswap_utils import blendImages as alpha_blend_fea
from dataset.utils.faceswap_utils import AlphaBlend as alpha_blend
from dataset.utils.face_aug import aug_one_im, change_res
from dataset.utils.image_ae import get_pretraiend_ae
from dataset.utils.warp import warp_mask
from dataset.utils import faceswap
from scipy.ndimage.filters import gaussian_filter


class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
	def apply(self,img,**params):
		return self.randomdownscale(img)

	def randomdownscale(self,img):
		keep_ratio=True
		keep_input_shape=True
		H,W,C=img.shape
		ratio_list=[2,4]
		r=ratio_list[np.random.randint(len(ratio_list))]
		img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
		if keep_input_shape:
			img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
		return img_ds


class FFBlendDataset(data.Dataset):
    def __init__(self, config=None):

        self.lmdb = config.get('lmdb', False)
        if self.lmdb:
            lmdb_path = os.path.join(config['lmdb_dir'], f"FaceForensics++_lmdb")
            self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)

        # Check if the dictionary has already been created
        if os.path.exists('training/lib/nearest_face_info.pkl'):
            with open('training/lib/nearest_face_info.pkl', 'rb') as f:
                face_info = pickle.load(f)
        else:
            raise ValueError(f"Need to run the dataset/generate_xray_nearest.py before training the face xray.")
        self.face_info = face_info
        # Check if the dictionary has already been created
        if os.path.exists('training/lib/landmark_dict_ffall.pkl'):
            with open('training/lib/landmark_dict_ffall.pkl', 'rb') as f:
                landmark_dict = pickle.load(f)
        self.landmark_dict = landmark_dict
        self.imid_list = self.get_training_imglist()
        self.transforms = T.Compose([
            # T.GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
            # T.ColorJitter(hue=.05, saturation=.05),
            # T.RandomHorizontalFlip(),
            # T.RandomRotation(20, resample=Image.BILINEAR),
            T.ToTensor(),
            T.Normalize(mean=[0.5, 0.5, 0.5],
                        std=[0.5, 0.5, 0.5])
        ])
        self.data_dict = {
            'imid_list': self.imid_list
        }
        self.config=config
    # def data_aug(self, im):
    #     """
    #     Apply data augmentation on the input image.
    #     """
    #     transform = T.Compose([
    #         T.ToPILImage(),
    #         T.GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
    #         T.ColorJitter(hue=.05, saturation=.05),
    #     ])
    #     # Apply transformations
    #     im_aug = transform(im)
    #     return im_aug

    def blended_aug(self, im):
        transform = A.Compose([
            A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
            A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
            A.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
            A.ImageCompression(quality_lower=40, quality_upper=100,p=0.5)
        ])
        # Apply transformations
        im_aug = transform(image=im)
        return im_aug['image']


    def data_aug(self, im):
        """

        Apply data augmentation on the input image using albumentations.

        """
        transform = A.Compose([
            A.Compose([
                A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
                A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
                A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
            ],p=1),
            A.OneOf([
                RandomDownScale(p=1),
                A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
            ],p=1),
        ], p=1.)
        # Apply transformations
        im_aug = transform(image=im)
        return im_aug['image']

    
    def get_training_imglist(self):
        """

        Get the list of training images.

        """
        random.seed(1024)  # Fix the random seed for reproducibility
        imid_list = list(self.landmark_dict.keys())
        # imid_list = [imid.replace('landmarks', 'frames').replace('npy', 'png') for imid in imid_list]
        random.shuffle(imid_list)
        return imid_list

    def load_rgb(self, file_path):
        """

        Load an RGB image from a file path and resize it to a specified resolution.



        Args:

            file_path: A string indicating the path to the image file.



        Returns:

            An Image object containing the loaded and resized image.



        Raises:

            ValueError: If the loaded image is None.

        """
        size = self.config['resolution'] # if self.mode == "train" else self.config['resolution']
        if not self.lmdb:
            if not file_path[0] == '.':
                file_path =  f'./{self.config["rgb_dir"]}\\'+file_path
            assert os.path.exists(file_path), f"{file_path} does not exist"
            img = cv2.imread(file_path)
            if img is None:
                raise ValueError('Loaded image is None: {}'.format(file_path))
        elif self.lmdb:
            with self.env.begin(write=False) as txn:
                # transfer the path format from rgb-path to lmdb-key
                if file_path[0]=='.':
                    file_path=file_path.replace('./datasets\\','')

                image_bin = txn.get(file_path.encode())
                image_buf = np.frombuffer(image_bin, dtype=np.uint8)
                img = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
        return np.array(img, dtype=np.uint8)


    def load_mask(self, file_path):
        """

        Load a binary mask image from a file path and resize it to a specified resolution.



        Args:

            file_path: A string indicating the path to the mask file.



        Returns:

            A numpy array containing the loaded and resized mask.



        Raises:

            None.

        """
        size = self.config['resolution']
        if file_path is None:
            if not file_path[0] == '.':
                file_path =  f'./{self.config["rgb_dir"]}\\'+file_path
            return np.zeros((size, size, 1))
        if not self.lmdb:
            if os.path.exists(file_path):
                mask = cv2.imread(file_path, 0)
                if mask is None:
                    mask = np.zeros((size, size))
            else:
                return np.zeros((size, size, 1))
        else:
            with self.env.begin(write=False) as txn:
                # transfer the path format from rgb-path to lmdb-key
                if file_path[0]=='.':
                    file_path=file_path.replace('./datasets\\','')
                image_bin = txn.get(file_path.encode())
                image_buf = np.frombuffer(image_bin, dtype=np.uint8)
                # cv2.IMREAD_GRAYSCALE为灰度图,cv2.IMREAD_COLOR为彩色图
                mask = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
        mask = cv2.resize(mask, (size, size)) / 255
        mask = np.expand_dims(mask, axis=2)
        return np.float32(mask)

    def load_landmark(self, file_path):
        """

        Load 2D facial landmarks from a file path.



        Args:

            file_path: A string indicating the path to the landmark file.



        Returns:

            A numpy array containing the loaded landmarks.



        Raises:

            None.

        """
        if file_path is None:
            return np.zeros((81, 2))
        if not self.lmdb:
            if not file_path[0] == '.':
                file_path =  f'./{self.config["rgb_dir"]}\\'+file_path
            if os.path.exists(file_path):
                landmark = np.load(file_path)
            else:
                return np.zeros((81, 2))
        else:
            with self.env.begin(write=False) as txn:
                # transfer the path format from rgb-path to lmdb-key
                if file_path[0]=='.':
                    file_path=file_path.replace('./datasets\\','')
                binary = txn.get(file_path.encode())
                landmark = np.frombuffer(binary, dtype=np.uint32).reshape((81, 2))
        return np.float32(landmark)

    def preprocess_images(self, imid_fg, imid_bg):
        """

        Load foreground and background images and face shapes.

        """
        fg_im = self.load_rgb(imid_fg.replace('landmarks', 'frames').replace('npy', 'png'))
        fg_im = np.array(self.data_aug(fg_im))
        fg_shape = self.landmark_dict[imid_fg]
        fg_shape = np.array(fg_shape, dtype=np.int32)

        bg_im = self.load_rgb(imid_bg.replace('landmarks', 'frames').replace('npy', 'png'))
        bg_im = np.array(self.data_aug(bg_im))
        bg_shape = self.landmark_dict[imid_bg]
        bg_shape = np.array(bg_shape, dtype=np.int32)

        if fg_im is None:
            return bg_im, bg_shape, bg_im, bg_shape
        elif bg_im is None:
            return fg_im, fg_shape, fg_im, fg_shape
        
        return fg_im, fg_shape, bg_im, bg_shape


    def get_fg_bg(self, one_lmk_path):
        """

        Get foreground and background paths

        """
        bg_lmk_path = one_lmk_path
        # Randomly pick one from the nearest neighbors for the foreground
        if bg_lmk_path in self.face_info:
            fg_lmk_path = random.choice(self.face_info[bg_lmk_path])
        else:
            fg_lmk_path = bg_lmk_path

        return fg_lmk_path, bg_lmk_path


    def generate_masks(self, fg_im, fg_shape, bg_im, bg_shape):
        """

        Generate masks for foreground and background images.

        """
        fg_mask = get_mask(fg_shape, fg_im, deform=False)
        bg_mask = get_mask(bg_shape, bg_im, deform=True)

        # # Only do the postprocess for the background mask
        bg_mask_postprocess = warp_mask(bg_mask, std=20)
        return fg_mask, bg_mask_postprocess

    
    def warp_images(self, fg_im, fg_shape, bg_im, bg_shape, fg_mask):
        """

        Warp foreground face onto background image using affine or 3D warping.

        """
        H, W, C = bg_im.shape
        use_3d_warp = np.random.rand() < 0.5

        if not use_3d_warp:
            aff_param = np.array(get_align_mat_new(fg_shape, bg_shape)).reshape(2, 3)
            warped_face = cv2.warpAffine(fg_im, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
            fg_mask = cv2.warpAffine(fg_mask, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
            fg_mask = fg_mask > 0
        else:
            warped_face = faceswap.warp_image_3d(fg_im, np.array(fg_shape[:48]), np.array(bg_shape[:48]), (H, W))
            fg_mask = np.mean(warped_face, axis=2) > 0

        return warped_face, fg_mask


    def colorTransfer(self, src, dst, mask):
        transferredDst = np.copy(dst)
        maskIndices = np.where(mask != 0)
        maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.float32)
        maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.float32)

        # Compute means and standard deviations
        meanSrc = np.mean(maskedSrc, axis=0)
        stdSrc = np.std(maskedSrc, axis=0)
        meanDst = np.mean(maskedDst, axis=0)
        stdDst = np.std(maskedDst, axis=0)

        # Perform color transfer
        maskedDst = (maskedDst - meanDst) * (stdSrc / stdDst) + meanSrc
        maskedDst = np.clip(maskedDst, 0, 255)

        # Copy the entire background into transferredDst
        transferredDst = np.copy(dst)
        # Now apply color transfer only to the masked region
        transferredDst[maskIndices[0], maskIndices[1]] = maskedDst.astype(np.uint8)

        return transferredDst


    def blend_images(self, color_corrected_fg, bg_im, bg_mask, featherAmount=0.2):
        """

        Blend foreground and background images together.

        """
        # normalize the mask to have values between 0 and 1
        b_mask = bg_mask / 255.

        # Add an extra dimension and repeat the mask to match the number of channels in color_corrected_fg and bg_im
        b_mask = np.repeat(b_mask[:, :, np.newaxis], 3, axis=2)

        # Compute the alpha blending
        maskIndices = np.where(b_mask != 0)
        maskPts = np.hstack((maskIndices[1][:, np.newaxis], maskIndices[0][:, np.newaxis]))

        # FIXME: deal with the bugs of empty maskpts
        if maskPts.size == 0:
            print(f"No non-zero values found in bg_mask for blending. Skipping this image.")
            return color_corrected_fg  # or handle this situation differently according to the needs

        faceSize = np.max(maskPts, axis=0) - np.min(maskPts, axis=0)
        featherAmount = featherAmount * np.max(faceSize)

        hull = cv2.convexHull(maskPts)
        dists = np.zeros(maskPts.shape[0])
        for i in range(maskPts.shape[0]):
            dists[i] = cv2.pointPolygonTest(hull, (int(maskPts[i, 0]), int(maskPts[i, 1])), True)

        weights = np.clip(dists / featherAmount, 0, 1)

        # Perform the blending operation
        color_corrected_fg = color_corrected_fg.astype(float)
        bg_im = bg_im.astype(float)
        blended_image = np.copy(bg_im)
        blended_image[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * color_corrected_fg[maskIndices[0], maskIndices[1]] + (1 - weights[:, np.newaxis]) * bg_im[maskIndices[0], maskIndices[1]]
        
        # Convert the blended image to 8-bit unsigned integers
        blended_image = np.clip(blended_image, 0, 255)
        blended_image = blended_image.astype(np.uint8)
        return blended_image


    def process_images(self, imid_fg, imid_bg, index):
        """

        Overview:

        Process foreground and background images following the data generation pipeline (BI dataset).



        Terminology:

        Foreground (fg) image: The image containing the face that will be blended onto the background image.

        Background (bg) image: The image onto which the face from the foreground image will be blended.

        """
        fg_im, fg_shape, bg_im, bg_shape = self.preprocess_images(imid_fg, imid_bg)
        fg_mask, bg_mask = self.generate_masks(fg_im, fg_shape, bg_im, bg_shape)
        warped_face, fg_mask = self.warp_images(fg_im, fg_shape, bg_im, bg_shape, fg_mask)

        try:
            # add the below two lines to make sure the bg_mask is strictly within the fg_mask
            bg_mask[fg_mask == 0] = 0
            color_corrected_fg = self.colorTransfer(bg_im, warped_face, bg_mask)
            blended_image = self.blend_images(color_corrected_fg, bg_im, bg_mask)
        # FIXME: ugly, in order to fix the problem of mask (all zero values for bg_mask)
        except:
            color_corrected_fg = self.colorTransfer(bg_im, warped_face, bg_mask)
            blended_image = self.blend_images(color_corrected_fg, bg_im, bg_mask)
        boundary = get_boundary(bg_mask)

        # # Prepare images and titles for the combined image
        # images = [fg_im, np.where(fg_mask>0, 255, 0), bg_im, bg_mask, color_corrected_fg, blended_image, np.where(boundary>0, 255, 0)]
        # titles = ["Fg Image", "Fg Mask", "Bg Image",
        #         "Bg Mask", "Blended Region",
        #         "Blended Image", "Boundary"]

        # # Save the combined image
        # os.makedirs('facexray_examples_3', exist_ok=True)
        # self.save_combined_image(images, titles, index, f'facexray_examples_3/combined_image_{index}.png')
        return blended_image, boundary, bg_im


    def post_proc(self, img):
        '''

        if self.mode == 'train':

            #if np.random.rand() < 0.5:

            #    img = random_add_noise(img)

                #add_gaussian_noise(img)

            if np.random.rand() < 0.5:

                #img, _ = change_res(img)

                img = gaussian_blur(img)

        '''
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        im_aug = self.blended_aug(img)
        im_aug = Image.fromarray(np.uint8(img))
        im_aug = self.transforms(im_aug)
        return im_aug
    

    @staticmethod
    def save_combined_image(images, titles, index, save_path):
        """

        Save the combined image with titles for each single image.



        Args:

            images (List[np.ndarray]): List of images to be combined.

            titles (List[str]): List of titles for each image.

            index (int): Index of the image.

            save_path (str): Path to save the combined image.

        """
        # Determine the maximum height and width among the images
        max_height = max(image.shape[0] for image in images)
        max_width = max(image.shape[1] for image in images)

        # Create the canvas
        canvas = np.zeros((max_height * len(images), max_width, 3), dtype=np.uint8)

        # Place the images and titles on the canvas
        current_height = 0
        for image, title in zip(images, titles):
            height, width = image.shape[:2]
            
            # Check if image has a third dimension (color channels)
            if image.ndim == 2:
                # If not, add a third dimension
                image = np.tile(image[..., None], (1, 1, 3))

            canvas[current_height : current_height + height, :width] = image
            cv2.putText(
                canvas, title, (10, current_height + 30),
                cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2
            )
            current_height += height

        # Save the combined image
        cv2.imwrite(save_path, canvas)
    

    def __getitem__(self, index):
        """

        Get an item from the dataset by index.

        """
        one_lmk_path = self.imid_list[index]
        try:
            label = 1 if one_lmk_path.split('/')[6]=='manipulated_sequences' else 0
        except Exception as e:
            label = 1 if one_lmk_path.split('\\')[6] == 'manipulated_sequences' else 0
        imid_fg, imid_bg = self.get_fg_bg(one_lmk_path)
        manipulate_img, boundary, imid_bg = self.process_images(imid_fg, imid_bg, index)

        manipulate_img = self.post_proc(manipulate_img)
        imid_bg = self.post_proc(imid_bg)
        boundary = torch.from_numpy(boundary)
        boundary = boundary.unsqueeze(2).permute(2, 0, 1)

        # fake data
        fake_data_tuple = (manipulate_img, boundary, 1)
        # real data
        real_data_tuple = (imid_bg, torch.zeros_like(boundary), label)

        return fake_data_tuple, real_data_tuple


    @staticmethod
    def collate_fn(batch):
        """

        Collates batches of data and shuffles the images.

        """
        # Unzip the batch
        fake_data, real_data = zip(*batch)

        # Unzip the fake and real data
        fake_images, fake_boundaries, fake_labels = zip(*fake_data)
        real_images, real_boundaries, real_labels = zip(*real_data)

        # Combine fake and real data
        images = torch.stack(fake_images + real_images)
        boundaries = torch.stack(fake_boundaries + real_boundaries)
        labels = torch.tensor(fake_labels + real_labels)

        # Combine images, boundaries, and labels into tuples
        combined_data = list(zip(images, boundaries, labels))

        # Shuffle the combined data
        random.shuffle(combined_data)

        # Unzip the shuffled data
        images, boundaries, labels = zip(*combined_data)

        # Create the data dictionary
        data_dict = {
            'image': torch.stack(images),
            'label': torch.tensor(labels),
            'mask': torch.stack(boundaries),  # Assuming boundaries are your masks
            'landmark': None  # Add your landmark data if available
        }

        return data_dict


    def __len__(self):
        """

        Get the length of the dataset.

        """
        return len(self.imid_list)


if __name__ == "__main__":
    dataset = FFBlendDataset()
    print('dataset lenth: ', len(dataset))

    def tensor2bgr(im):
        img = im.squeeze().cpu().numpy().transpose(1, 2, 0)
        img = (img + 1)/2 * 255
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
        return img

    def tensor2gray(im):
        img = im.squeeze().cpu().numpy()
        img = img * 255
        return img

    for i, data_dict in enumerate(dataset):
        if i > 20:
            break
        if label == 1:
            if not use_mouth:
                img, boudary = im
                cv2.imwrite('{}_whole.png'.format(i), tensor2bgr(img))
                cv2.imwrite('{}_boudnary.png'.format(i), tensor2gray(boudary))
            else:
                img, mouth, boudary = im
                cv2.imwrite('{}_whole.png'.format(i), tensor2bgr(img))
                cv2.imwrite('{}_mouth.png'.format(i), tensor2bgr(mouth))
                cv2.imwrite('{}_boudnary.png'.format(i), tensor2gray(boudary))