File size: 22,348 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-03-30
The code is designed for Face X-ray.
'''
import os
import sys
import json
import pickle
import time
import lmdb
import numpy as np
import albumentations as A
import cv2
import random
from PIL import Image
from skimage.util import random_noise
from scipy import linalg
import heapq as hq
import lmdb
import torch
from torch.autograd import Variable
from torch.utils import data
from torchvision import transforms as T
import torchvision
from dataset.utils.face_blend import *
from dataset.utils.face_align import get_align_mat_new
from dataset.utils.color_transfer import color_transfer
from dataset.utils.faceswap_utils import blendImages as alpha_blend_fea
from dataset.utils.faceswap_utils import AlphaBlend as alpha_blend
from dataset.utils.face_aug import aug_one_im, change_res
from dataset.utils.image_ae import get_pretraiend_ae
from dataset.utils.warp import warp_mask
from dataset.utils import faceswap
from scipy.ndimage.filters import gaussian_filter
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
def apply(self,img,**params):
return self.randomdownscale(img)
def randomdownscale(self,img):
keep_ratio=True
keep_input_shape=True
H,W,C=img.shape
ratio_list=[2,4]
r=ratio_list[np.random.randint(len(ratio_list))]
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
if keep_input_shape:
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
return img_ds
class FFBlendDataset(data.Dataset):
def __init__(self, config=None):
self.lmdb = config.get('lmdb', False)
if self.lmdb:
lmdb_path = os.path.join(config['lmdb_dir'], f"FaceForensics++_lmdb")
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
# Check if the dictionary has already been created
if os.path.exists('training/lib/nearest_face_info.pkl'):
with open('training/lib/nearest_face_info.pkl', 'rb') as f:
face_info = pickle.load(f)
else:
raise ValueError(f"Need to run the dataset/generate_xray_nearest.py before training the face xray.")
self.face_info = face_info
# Check if the dictionary has already been created
if os.path.exists('training/lib/landmark_dict_ffall.pkl'):
with open('training/lib/landmark_dict_ffall.pkl', 'rb') as f:
landmark_dict = pickle.load(f)
self.landmark_dict = landmark_dict
self.imid_list = self.get_training_imglist()
self.transforms = T.Compose([
# T.GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
# T.ColorJitter(hue=.05, saturation=.05),
# T.RandomHorizontalFlip(),
# T.RandomRotation(20, resample=Image.BILINEAR),
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
self.data_dict = {
'imid_list': self.imid_list
}
self.config=config
# def data_aug(self, im):
# """
# Apply data augmentation on the input image.
# """
# transform = T.Compose([
# T.ToPILImage(),
# T.GaussianBlur(kernel_size=3, sigma=(0.1, 2.0)),
# T.ColorJitter(hue=.05, saturation=.05),
# ])
# # Apply transformations
# im_aug = transform(im)
# return im_aug
def blended_aug(self, im):
transform = A.Compose([
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
A.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
A.ImageCompression(quality_lower=40, quality_upper=100,p=0.5)
])
# Apply transformations
im_aug = transform(image=im)
return im_aug['image']
def data_aug(self, im):
"""
Apply data augmentation on the input image using albumentations.
"""
transform = A.Compose([
A.Compose([
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
],p=1),
A.OneOf([
RandomDownScale(p=1),
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
],p=1),
], p=1.)
# Apply transformations
im_aug = transform(image=im)
return im_aug['image']
def get_training_imglist(self):
"""
Get the list of training images.
"""
random.seed(1024) # Fix the random seed for reproducibility
imid_list = list(self.landmark_dict.keys())
# imid_list = [imid.replace('landmarks', 'frames').replace('npy', 'png') for imid in imid_list]
random.shuffle(imid_list)
return imid_list
def load_rgb(self, file_path):
"""
Load an RGB image from a file path and resize it to a specified resolution.
Args:
file_path: A string indicating the path to the image file.
Returns:
An Image object containing the loaded and resized image.
Raises:
ValueError: If the loaded image is None.
"""
size = self.config['resolution'] # if self.mode == "train" else self.config['resolution']
if not self.lmdb:
if not file_path[0] == '.':
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
assert os.path.exists(file_path), f"{file_path} does not exist"
img = cv2.imread(file_path)
if img is None:
raise ValueError('Loaded image is None: {}'.format(file_path))
elif self.lmdb:
with self.env.begin(write=False) as txn:
# transfer the path format from rgb-path to lmdb-key
if file_path[0]=='.':
file_path=file_path.replace('./datasets\\','')
image_bin = txn.get(file_path.encode())
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
img = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
return np.array(img, dtype=np.uint8)
def load_mask(self, file_path):
"""
Load a binary mask image from a file path and resize it to a specified resolution.
Args:
file_path: A string indicating the path to the mask file.
Returns:
A numpy array containing the loaded and resized mask.
Raises:
None.
"""
size = self.config['resolution']
if file_path is None:
if not file_path[0] == '.':
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
return np.zeros((size, size, 1))
if not self.lmdb:
if os.path.exists(file_path):
mask = cv2.imread(file_path, 0)
if mask is None:
mask = np.zeros((size, size))
else:
return np.zeros((size, size, 1))
else:
with self.env.begin(write=False) as txn:
# transfer the path format from rgb-path to lmdb-key
if file_path[0]=='.':
file_path=file_path.replace('./datasets\\','')
image_bin = txn.get(file_path.encode())
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
# cv2.IMREAD_GRAYSCALE为灰度图,cv2.IMREAD_COLOR为彩色图
mask = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
mask = cv2.resize(mask, (size, size)) / 255
mask = np.expand_dims(mask, axis=2)
return np.float32(mask)
def load_landmark(self, file_path):
"""
Load 2D facial landmarks from a file path.
Args:
file_path: A string indicating the path to the landmark file.
Returns:
A numpy array containing the loaded landmarks.
Raises:
None.
"""
if file_path is None:
return np.zeros((81, 2))
if not self.lmdb:
if not file_path[0] == '.':
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
if os.path.exists(file_path):
landmark = np.load(file_path)
else:
return np.zeros((81, 2))
else:
with self.env.begin(write=False) as txn:
# transfer the path format from rgb-path to lmdb-key
if file_path[0]=='.':
file_path=file_path.replace('./datasets\\','')
binary = txn.get(file_path.encode())
landmark = np.frombuffer(binary, dtype=np.uint32).reshape((81, 2))
return np.float32(landmark)
def preprocess_images(self, imid_fg, imid_bg):
"""
Load foreground and background images and face shapes.
"""
fg_im = self.load_rgb(imid_fg.replace('landmarks', 'frames').replace('npy', 'png'))
fg_im = np.array(self.data_aug(fg_im))
fg_shape = self.landmark_dict[imid_fg]
fg_shape = np.array(fg_shape, dtype=np.int32)
bg_im = self.load_rgb(imid_bg.replace('landmarks', 'frames').replace('npy', 'png'))
bg_im = np.array(self.data_aug(bg_im))
bg_shape = self.landmark_dict[imid_bg]
bg_shape = np.array(bg_shape, dtype=np.int32)
if fg_im is None:
return bg_im, bg_shape, bg_im, bg_shape
elif bg_im is None:
return fg_im, fg_shape, fg_im, fg_shape
return fg_im, fg_shape, bg_im, bg_shape
def get_fg_bg(self, one_lmk_path):
"""
Get foreground and background paths
"""
bg_lmk_path = one_lmk_path
# Randomly pick one from the nearest neighbors for the foreground
if bg_lmk_path in self.face_info:
fg_lmk_path = random.choice(self.face_info[bg_lmk_path])
else:
fg_lmk_path = bg_lmk_path
return fg_lmk_path, bg_lmk_path
def generate_masks(self, fg_im, fg_shape, bg_im, bg_shape):
"""
Generate masks for foreground and background images.
"""
fg_mask = get_mask(fg_shape, fg_im, deform=False)
bg_mask = get_mask(bg_shape, bg_im, deform=True)
# # Only do the postprocess for the background mask
bg_mask_postprocess = warp_mask(bg_mask, std=20)
return fg_mask, bg_mask_postprocess
def warp_images(self, fg_im, fg_shape, bg_im, bg_shape, fg_mask):
"""
Warp foreground face onto background image using affine or 3D warping.
"""
H, W, C = bg_im.shape
use_3d_warp = np.random.rand() < 0.5
if not use_3d_warp:
aff_param = np.array(get_align_mat_new(fg_shape, bg_shape)).reshape(2, 3)
warped_face = cv2.warpAffine(fg_im, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
fg_mask = cv2.warpAffine(fg_mask, aff_param, (W, H), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REFLECT)
fg_mask = fg_mask > 0
else:
warped_face = faceswap.warp_image_3d(fg_im, np.array(fg_shape[:48]), np.array(bg_shape[:48]), (H, W))
fg_mask = np.mean(warped_face, axis=2) > 0
return warped_face, fg_mask
def colorTransfer(self, src, dst, mask):
transferredDst = np.copy(dst)
maskIndices = np.where(mask != 0)
maskedSrc = src[maskIndices[0], maskIndices[1]].astype(np.float32)
maskedDst = dst[maskIndices[0], maskIndices[1]].astype(np.float32)
# Compute means and standard deviations
meanSrc = np.mean(maskedSrc, axis=0)
stdSrc = np.std(maskedSrc, axis=0)
meanDst = np.mean(maskedDst, axis=0)
stdDst = np.std(maskedDst, axis=0)
# Perform color transfer
maskedDst = (maskedDst - meanDst) * (stdSrc / stdDst) + meanSrc
maskedDst = np.clip(maskedDst, 0, 255)
# Copy the entire background into transferredDst
transferredDst = np.copy(dst)
# Now apply color transfer only to the masked region
transferredDst[maskIndices[0], maskIndices[1]] = maskedDst.astype(np.uint8)
return transferredDst
def blend_images(self, color_corrected_fg, bg_im, bg_mask, featherAmount=0.2):
"""
Blend foreground and background images together.
"""
# normalize the mask to have values between 0 and 1
b_mask = bg_mask / 255.
# Add an extra dimension and repeat the mask to match the number of channels in color_corrected_fg and bg_im
b_mask = np.repeat(b_mask[:, :, np.newaxis], 3, axis=2)
# Compute the alpha blending
maskIndices = np.where(b_mask != 0)
maskPts = np.hstack((maskIndices[1][:, np.newaxis], maskIndices[0][:, np.newaxis]))
# FIXME: deal with the bugs of empty maskpts
if maskPts.size == 0:
print(f"No non-zero values found in bg_mask for blending. Skipping this image.")
return color_corrected_fg # or handle this situation differently according to the needs
faceSize = np.max(maskPts, axis=0) - np.min(maskPts, axis=0)
featherAmount = featherAmount * np.max(faceSize)
hull = cv2.convexHull(maskPts)
dists = np.zeros(maskPts.shape[0])
for i in range(maskPts.shape[0]):
dists[i] = cv2.pointPolygonTest(hull, (int(maskPts[i, 0]), int(maskPts[i, 1])), True)
weights = np.clip(dists / featherAmount, 0, 1)
# Perform the blending operation
color_corrected_fg = color_corrected_fg.astype(float)
bg_im = bg_im.astype(float)
blended_image = np.copy(bg_im)
blended_image[maskIndices[0], maskIndices[1]] = weights[:, np.newaxis] * color_corrected_fg[maskIndices[0], maskIndices[1]] + (1 - weights[:, np.newaxis]) * bg_im[maskIndices[0], maskIndices[1]]
# Convert the blended image to 8-bit unsigned integers
blended_image = np.clip(blended_image, 0, 255)
blended_image = blended_image.astype(np.uint8)
return blended_image
def process_images(self, imid_fg, imid_bg, index):
"""
Overview:
Process foreground and background images following the data generation pipeline (BI dataset).
Terminology:
Foreground (fg) image: The image containing the face that will be blended onto the background image.
Background (bg) image: The image onto which the face from the foreground image will be blended.
"""
fg_im, fg_shape, bg_im, bg_shape = self.preprocess_images(imid_fg, imid_bg)
fg_mask, bg_mask = self.generate_masks(fg_im, fg_shape, bg_im, bg_shape)
warped_face, fg_mask = self.warp_images(fg_im, fg_shape, bg_im, bg_shape, fg_mask)
try:
# add the below two lines to make sure the bg_mask is strictly within the fg_mask
bg_mask[fg_mask == 0] = 0
color_corrected_fg = self.colorTransfer(bg_im, warped_face, bg_mask)
blended_image = self.blend_images(color_corrected_fg, bg_im, bg_mask)
# FIXME: ugly, in order to fix the problem of mask (all zero values for bg_mask)
except:
color_corrected_fg = self.colorTransfer(bg_im, warped_face, bg_mask)
blended_image = self.blend_images(color_corrected_fg, bg_im, bg_mask)
boundary = get_boundary(bg_mask)
# # Prepare images and titles for the combined image
# images = [fg_im, np.where(fg_mask>0, 255, 0), bg_im, bg_mask, color_corrected_fg, blended_image, np.where(boundary>0, 255, 0)]
# titles = ["Fg Image", "Fg Mask", "Bg Image",
# "Bg Mask", "Blended Region",
# "Blended Image", "Boundary"]
# # Save the combined image
# os.makedirs('facexray_examples_3', exist_ok=True)
# self.save_combined_image(images, titles, index, f'facexray_examples_3/combined_image_{index}.png')
return blended_image, boundary, bg_im
def post_proc(self, img):
'''
if self.mode == 'train':
#if np.random.rand() < 0.5:
# img = random_add_noise(img)
#add_gaussian_noise(img)
if np.random.rand() < 0.5:
#img, _ = change_res(img)
img = gaussian_blur(img)
'''
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
im_aug = self.blended_aug(img)
im_aug = Image.fromarray(np.uint8(img))
im_aug = self.transforms(im_aug)
return im_aug
@staticmethod
def save_combined_image(images, titles, index, save_path):
"""
Save the combined image with titles for each single image.
Args:
images (List[np.ndarray]): List of images to be combined.
titles (List[str]): List of titles for each image.
index (int): Index of the image.
save_path (str): Path to save the combined image.
"""
# Determine the maximum height and width among the images
max_height = max(image.shape[0] for image in images)
max_width = max(image.shape[1] for image in images)
# Create the canvas
canvas = np.zeros((max_height * len(images), max_width, 3), dtype=np.uint8)
# Place the images and titles on the canvas
current_height = 0
for image, title in zip(images, titles):
height, width = image.shape[:2]
# Check if image has a third dimension (color channels)
if image.ndim == 2:
# If not, add a third dimension
image = np.tile(image[..., None], (1, 1, 3))
canvas[current_height : current_height + height, :width] = image
cv2.putText(
canvas, title, (10, current_height + 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2
)
current_height += height
# Save the combined image
cv2.imwrite(save_path, canvas)
def __getitem__(self, index):
"""
Get an item from the dataset by index.
"""
one_lmk_path = self.imid_list[index]
try:
label = 1 if one_lmk_path.split('/')[6]=='manipulated_sequences' else 0
except Exception as e:
label = 1 if one_lmk_path.split('\\')[6] == 'manipulated_sequences' else 0
imid_fg, imid_bg = self.get_fg_bg(one_lmk_path)
manipulate_img, boundary, imid_bg = self.process_images(imid_fg, imid_bg, index)
manipulate_img = self.post_proc(manipulate_img)
imid_bg = self.post_proc(imid_bg)
boundary = torch.from_numpy(boundary)
boundary = boundary.unsqueeze(2).permute(2, 0, 1)
# fake data
fake_data_tuple = (manipulate_img, boundary, 1)
# real data
real_data_tuple = (imid_bg, torch.zeros_like(boundary), label)
return fake_data_tuple, real_data_tuple
@staticmethod
def collate_fn(batch):
"""
Collates batches of data and shuffles the images.
"""
# Unzip the batch
fake_data, real_data = zip(*batch)
# Unzip the fake and real data
fake_images, fake_boundaries, fake_labels = zip(*fake_data)
real_images, real_boundaries, real_labels = zip(*real_data)
# Combine fake and real data
images = torch.stack(fake_images + real_images)
boundaries = torch.stack(fake_boundaries + real_boundaries)
labels = torch.tensor(fake_labels + real_labels)
# Combine images, boundaries, and labels into tuples
combined_data = list(zip(images, boundaries, labels))
# Shuffle the combined data
random.shuffle(combined_data)
# Unzip the shuffled data
images, boundaries, labels = zip(*combined_data)
# Create the data dictionary
data_dict = {
'image': torch.stack(images),
'label': torch.tensor(labels),
'mask': torch.stack(boundaries), # Assuming boundaries are your masks
'landmark': None # Add your landmark data if available
}
return data_dict
def __len__(self):
"""
Get the length of the dataset.
"""
return len(self.imid_list)
if __name__ == "__main__":
dataset = FFBlendDataset()
print('dataset lenth: ', len(dataset))
def tensor2bgr(im):
img = im.squeeze().cpu().numpy().transpose(1, 2, 0)
img = (img + 1)/2 * 255
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def tensor2gray(im):
img = im.squeeze().cpu().numpy()
img = img * 255
return img
for i, data_dict in enumerate(dataset):
if i > 20:
break
if label == 1:
if not use_mouth:
img, boudary = im
cv2.imwrite('{}_whole.png'.format(i), tensor2bgr(img))
cv2.imwrite('{}_boudnary.png'.format(i), tensor2gray(boudary))
else:
img, mouth, boudary = im
cv2.imwrite('{}_whole.png'.format(i), tensor2bgr(img))
cv2.imwrite('{}_mouth.png'.format(i), tensor2bgr(mouth))
cv2.imwrite('{}_boudnary.png'.format(i), tensor2gray(boudary))
|