File size: 19,336 Bytes
caa56d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
'''
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-03-30
The code is designed for FWA and mainly modified from the below link:
https://github.com/yuezunli/DSP-FWA
'''
import os
import sys
import json
import pickle
import time
import dlib
import numpy as np
from copy import deepcopy
import cv2
import random
from PIL import Image
from skimage.util import random_noise
from skimage.draw import polygon
from scipy import linalg
import heapq as hq
import albumentations as A
import torch
from torch.autograd import Variable
from torch.utils import data
from torchvision import transforms as T
import torchvision
from dataset.utils.face_blend import *
from dataset.utils.face_align import get_align_mat_new
from dataset.utils.color_transfer import color_transfer
from dataset.utils.faceswap_utils import blendImages as alpha_blend_fea
from dataset.utils.faceswap_utils import AlphaBlend as alpha_blend
from dataset.utils.face_aug import aug_one_im, change_res
from dataset.utils.image_ae import get_pretraiend_ae
from dataset.utils.warp import warp_mask
from dataset.utils import faceswap
from scipy.ndimage.filters import gaussian_filter
from skimage.transform import AffineTransform, warp
from dataset.abstract_dataset import DeepfakeAbstractBaseDataset
# Define face detector and predictor models
face_detector = dlib.get_frontal_face_detector()
predictor_path = 'preprocessing/dlib_tools/shape_predictor_81_face_landmarks.dat'
face_predictor = dlib.shape_predictor(predictor_path)
mean_face_x = np.array([
0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
0.553364, 0.490127, 0.42689])
mean_face_y = np.array([
0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
0.784792, 0.824182, 0.831803, 0.824182])
landmarks_2D = np.stack([mean_face_x, mean_face_y], axis=1)
class RandomDownScale(A.core.transforms_interface.ImageOnlyTransform):
def apply(self,img,**params):
return self.randomdownscale(img)
def randomdownscale(self,img):
keep_ratio=True
keep_input_shape=True
H,W,C=img.shape
ratio_list=[2,4]
r=ratio_list[np.random.randint(len(ratio_list))]
img_ds=cv2.resize(img,(int(W/r),int(H/r)),interpolation=cv2.INTER_NEAREST)
if keep_input_shape:
img_ds=cv2.resize(img_ds,(W,H),interpolation=cv2.INTER_LINEAR)
return img_ds
def umeyama( src, dst, estimate_scale ):
"""Estimate N-D similarity transformation with or without scaling.
Parameters
----------
src : (M, N) array
Source coordinates.
dst : (M, N) array
Destination coordinates.
estimate_scale : bool
Whether to estimate scaling factor.
Returns
-------
T : (N + 1, N + 1)
The homogeneous similarity transformation matrix. The matrix contains
NaN values only if the problem is not well-conditioned.
References
----------
.. [1] "Least-squares estimation of transformation parameters between two
point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
"""
num = src.shape[0]
dim = src.shape[1]
# Compute mean of src and dst.
src_mean = src.mean(axis=0)
dst_mean = dst.mean(axis=0)
# Subtract mean from src and dst.
src_demean = src - src_mean
dst_demean = dst - dst_mean
# Eq. (38).
A = np.dot(dst_demean.T, src_demean) / num
# Eq. (39).
d = np.ones((dim,), dtype=np.double)
if np.linalg.det(A) < 0:
d[dim - 1] = -1
T = np.eye(dim + 1, dtype=np.double)
U, S, V = np.linalg.svd(A)
# Eq. (40) and (43).
rank = np.linalg.matrix_rank(A)
if rank == 0:
return np.nan * T
elif rank == dim - 1:
if np.linalg.det(U) * np.linalg.det(V) > 0:
T[:dim, :dim] = np.dot(U, V)
else:
s = d[dim - 1]
d[dim - 1] = -1
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
d[dim - 1] = s
else:
T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V.T))
if estimate_scale:
# Eq. (41) and (42).
scale = 1.0 / src_demean.var(axis=0).sum() * np.dot(S, d)
else:
scale = 1.0
T[:dim, dim] = dst_mean - scale * np.dot(T[:dim, :dim], src_mean.T)
T[:dim, :dim] *= scale
return T
def shape_to_np(shape, dtype="int"):
# initialize the list of (x, y)-coordinates
coords = np.zeros((68, 2), dtype=dtype)
# loop over the 68 facial landmarks and convert them
# to a 2-tuple of (x, y)-coordinates
for i in range(0, 68):
coords[i] = (shape.part(i).x, shape.part(i).y)
# return the list of (x, y)-coordinates
return coords
from skimage.transform import AffineTransform, warp
def get_warped_face(face, landmarks, tform):
"""
Apply the given affine transformation to the face and landmarks.
Args:
face (np.ndarray): The face image to be transformed.
landmarks (np.ndarray): The facial landmarks to be transformed.
tform (AffineTransform): The transformation to apply.
Returns:
warped_face (np.ndarray): The transformed face image.
warped_landmarks (np.ndarray): The transformed facial landmarks.
"""
# Apply the transformation to the face
warped_face = warp(face, tform.inverse, output_shape=face.shape)
warped_face = (warped_face * 255).astype(np.uint8)
# Apply the transformation to the landmarks
warped_landmarks = tform.inverse(landmarks)
return warped_face, warped_landmarks
def warp_face_within_landmarks(face, landmarks, tform):
"""
Apply the given affine transformation to the face and landmarks,
and retain only the area within the landmarks.
Args:
face (np.ndarray): The face image to be transformed.
landmarks (np.ndarray): The facial landmarks to be transformed.
tform (AffineTransform): The transformation to apply.
Returns:
warped_face (np.ndarray): The transformed face image.
warped_landmarks (np.ndarray): The transformed facial landmarks.
"""
# Apply the transformation to the face
warped_face = warp(face, tform.inverse, output_shape=face.shape)
warped_face = (warped_face * 255).astype(np.uint8)
# Apply the transformation to the landmarks
warped_landmarks = np.linalg.inv(landmarks)
# Generate a mask based on the landmarks
rr, cc = polygon(warped_landmarks[:, 1], warped_landmarks[:, 0])
mask = np.zeros_like(warped_face, dtype=np.uint8)
mask[rr, cc] = 1
# Apply the mask to the face
warped_face *= mask
return warped_face, warped_landmarks
def get_2d_aligned_face(image, mat, size, padding=[0, 0]):
mat = mat * size
mat[0, 2] += padding[0]
mat[1, 2] += padding[1]
return cv2.warpAffine(image, mat, (size + 2 * padding[0], size + 2 * padding[1]))
def get_2d_aligned_landmarks(face_cache, aligned_face_size=256, padding=(0, 0)):
mat, points = face_cache
# Mapping landmarks to aligned face
pred_ = np.concatenate([points, np.ones((points.shape[0], 1))], axis=-1)
pred_ = np.transpose(pred_)
mat = mat * aligned_face_size
mat[0, 2] += padding[0]
mat[1, 2] += padding[1]
aligned_shape = np.dot(mat, pred_)
aligned_shape = np.transpose(aligned_shape[:2, :])
return aligned_shape
def get_aligned_face_and_landmarks(im, face_cache, aligned_face_size = 256, padding=(0, 0)):
"""
get all aligned faces and landmarks of all images
:param imgs: origin images
:param fa: face_alignment package
:return:
"""
aligned_cur_shapes = []
aligned_cur_im = []
for mat, points in face_cache:
# Get transform matrix
aligned_face = get_2d_aligned_face(im, mat, aligned_face_size, padding)
aligned_shape = get_2d_aligned_landmarks([mat, points], aligned_face_size, padding)
aligned_cur_shapes.append(aligned_shape)
aligned_cur_im.append(aligned_face)
return aligned_cur_im, aligned_cur_shapes
def face_warp(im, face, trans_matrix, size, padding):
new_face = np.clip(face, 0, 255).astype(im.dtype)
image_size = im.shape[1], im.shape[0]
tmp_matrix = trans_matrix * size
delta_matrix = np.array([[0., 0., padding[0]*1.0], [0., 0., padding[1]*1.0]])
tmp_matrix = tmp_matrix + delta_matrix
# Warp the new face onto a blank canvas
warped_face = np.zeros_like(im)
cv2.warpAffine(new_face, tmp_matrix, image_size, warped_face, cv2.WARP_INVERSE_MAP,
cv2.BORDER_TRANSPARENT)
# Create a mask of the warped face
mask = (warped_face > 0).astype(np.uint8)
# Blend the warped face with the original image
new_image = im * (1 - mask) + warped_face * mask
return new_image, mask
def get_face_loc(im, face_detector, scale=0):
""" get face locations, color order of images is rgb """
faces = face_detector(np.uint8(im), scale)
face_list = []
if faces is not None or len(faces) > 0:
for i, d in enumerate(faces):
try:
face_list.append([d.left(), d.top(), d.right(), d.bottom()])
except:
face_list.append([d.rect.left(), d.rect.top(), d.rect.right(), d.rect.bottom()])
return face_list
def align(im, face_detector, lmark_predictor, scale=0):
# This version we handle all faces in view
# channel order rgb
im = np.uint8(im)
faces = face_detector(im, scale)
face_list = []
if faces is not None or len(faces) > 0:
for pred in faces:
try:
points = shape_to_np(lmark_predictor(im, pred))
except:
points = shape_to_np(lmark_predictor(im, pred.rect))
trans_matrix = umeyama(points[17:], landmarks_2D, True)[0:2]
face_list.append([trans_matrix, points])
return face_list
class FWABlendDataset(DeepfakeAbstractBaseDataset):
def __init__(self, config=None):
super().__init__(config, mode='train')
self.transforms = T.Compose([
T.ToTensor(),
T.Normalize(mean=config['mean'],
std=config['std'])
])
self.resolution = config['resolution']
def blended_aug(self, im):
transform = A.Compose([
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=0.3),
A.RandomBrightnessContrast(brightness_limit=(-0.3,0.3), contrast_limit=(-0.3,0.3), p=0.3),
A.ImageCompression(quality_lower=40, quality_upper=100,p=0.5)
])
# Apply transformations
im_aug = transform(image=im)
return im_aug['image']
def data_aug(self, im):
"""
Apply data augmentation on the input image using albumentations.
"""
transform = A.Compose([
A.Compose([
A.RGBShift((-20,20),(-20,20),(-20,20),p=0.3),
A.HueSaturationValue(hue_shift_limit=(-0.3,0.3), sat_shift_limit=(-0.3,0.3), val_shift_limit=(-0.3,0.3), p=1),
A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1,0.1), p=1),
],p=1),
A.OneOf([
RandomDownScale(p=1),
A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1),
],p=1),
], p=1.)
# Apply transformations
im_aug = transform(image=im)
return im_aug['image']
def blend_images(self, img_path):
#im = cv2.imread(img_path)
im = np.array(self.load_rgb(img_path))
# Get the alignment of the head
face_cache = align(im, face_detector, face_predictor)
# Get the aligned face and landmarks
aligned_im_head, aligned_shape = get_aligned_face_and_landmarks(im, face_cache)
# If no faces were detected in the image, return None (or any suitable value)
if len(aligned_im_head) == 0 or len(aligned_shape) == 0:
return None, None
aligned_im_head = aligned_im_head[0]
aligned_shape = aligned_shape[0]
# Apply transformations to the face
scale_factor = random.choice([0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8])
scaled_face = cv2.resize(aligned_im_head, (0, 0), fx=scale_factor, fy=scale_factor)
# Apply Gaussian blur to the scaled face
blurred_face = cv2.GaussianBlur(scaled_face, (5, 5), 0)
# Resize the processed image back to the original size
resized_face = cv2.resize(blurred_face, (aligned_im_head.shape[1], aligned_im_head.shape[0]))
# Generate a random facial mask
mask = get_mask(aligned_shape.astype(np.float32), resized_face, std=20, deform=True)
# Apply the mask to the resized face
masked_face = cv2.bitwise_and(resized_face, resized_face, mask=mask)
# do aug before warp
im = np.array(self.blended_aug(im))
# Warp the face back to the original image
im, masked_face = face_warp(im, masked_face, face_cache[0][0], self.resolution, [0, 0])
shape = get_2d_aligned_landmarks(face_cache[0], self.resolution, [0, 0])
return im, masked_face
def process_images(self, img_path, index):
"""
Process an image following the data generation pipeline.
"""
blended_im, mask = self.blend_images(img_path)
# Prepare images and titles for the combined image
imid_fg = np.array(self.load_rgb(img_path))
imid_fg = np.array(self.data_aug(imid_fg))
if blended_im is None or mask is None:
return imid_fg, None
# images = [
# imid_fg,
# np.where(mask.astype(np.uint8)>0, 255, 0),
# blended_im,
# ]
# titles = ["Image", "Mask", "Blended Image"]
# # Save the combined image
# os.makedirs('fwa_examples_2', exist_ok=True)
# self.save_combined_image(images, titles, index, f'fwa_examples_2/combined_image_{index}.png')
return imid_fg, blended_im
def post_proc(self, img):
'''
if self.mode == 'train':
#if np.random.rand() < 0.5:
# img = random_add_noise(img)
#add_gaussian_noise(img)
if np.random.rand() < 0.5:
#img, _ = change_res(img)
img = gaussian_blur(img)
'''
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
im_aug = self.blended_aug(img)
im_aug = Image.fromarray(np.uint8(img))
im_aug = self.transforms(im_aug)
return im_aug
@staticmethod
def save_combined_image(images, titles, index, save_path):
"""
Save the combined image with titles for each single image.
Args:
images (List[np.ndarray]): List of images to be combined.
titles (List[str]): List of titles for each image.
index (int): Index of the image.
save_path (str): Path to save the combined image.
"""
# Determine the maximum height and width among the images
max_height = max(image.shape[0] for image in images)
max_width = max(image.shape[1] for image in images)
# Create the canvas
canvas = np.zeros((max_height * len(images), max_width, 3), dtype=np.uint8)
# Place the images and titles on the canvas
current_height = 0
for image, title in zip(images, titles):
height, width = image.shape[:2]
# Check if image has a third dimension (color channels)
if image.ndim == 2:
# If not, add a third dimension
image = np.tile(image[..., None], (1, 1, 3))
canvas[current_height : current_height + height, :width] = image
cv2.putText(
canvas, title, (10, current_height + 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2
)
current_height += height
# Save the combined image
cv2.imwrite(save_path, canvas)
def __getitem__(self, index):
"""
Get an item from the dataset by index.
"""
one_img_path = self.data_dict['image'][index]
try:
label = 1 if one_img_path.split('/')[6]=='manipulated_sequences' else 0
except Exception as e:
label = 1 if one_img_path.split('\\')[6] == 'manipulated_sequences' else 0
blend_label = 1
imid, manipulate_img = self.process_images(one_img_path, index)
if manipulate_img is None:
manipulate_img = deepcopy(imid)
blend_label = label
manipulate_img = self.post_proc(manipulate_img)
imid = self.post_proc(imid)
# blend data
fake_data_tuple = (manipulate_img, blend_label)
# original data
real_data_tuple = (imid, label)
return fake_data_tuple, real_data_tuple
@staticmethod
def collate_fn(batch):
"""
Collates batches of data and shuffles the images.
"""
# Unzip the batch
fake_data, real_data = zip(*batch)
# Unzip the fake and real data
fake_images, fake_labels = zip(*fake_data)
real_images, real_labels = zip(*real_data)
# Combine fake and real data
images = torch.stack(fake_images + real_images)
labels = torch.tensor(fake_labels + real_labels)
# Combine images, boundaries, and labels into tuples
combined_data = list(zip(images, labels))
# Shuffle the combined data
random.shuffle(combined_data)
# Unzip the shuffled data
images, labels = zip(*combined_data)
# Create the data dictionary
data_dict = {
'image': torch.stack(images),
'label': torch.tensor(labels),
'mask': None,
'landmark': None # Add your landmark data if available
}
return data_dict
|