File size: 6,638 Bytes
caa56d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/python
# -*- coding: UTF-8 -*-
# Created by: algohunt
# Microsoft Research & Peking University 
# [email protected]
# Copyright (c) 2019

#!/usr/bin/env python3
""" Masks functions for faceswap.py """

import inspect
import logging
import sys

import cv2
import numpy as np

# logger = logging.getLogger(__name__)  # pylint: disable=invalid-name


def get_available_masks():
    """ Return a list of the available masks for cli """
    masks = sorted([name for name, obj in inspect.getmembers(sys.modules[__name__])
                    if inspect.isclass(obj) and name != "Mask"])
    masks.append("none")
    # logger.debug(masks)
    return masks


def get_default_mask():
    """ Set the default mask for cli """
    masks = get_available_masks()
    default = "dfl_full"
    default = default if default in masks else masks[0]
    # logger.debug(default)
    return default


class Mask():
    """ Parent class for masks
        the output mask will be <mask_type>.mask
        channels: 1, 3 or 4:
                    1 - Returns a single channel mask
                    3 - Returns a 3 channel mask
                    4 - Returns the original image with the mask in the alpha channel """

    def __init__(self, landmarks, face, channels=4):
        # logger.info("Initializing %s: (face_shape: %s, channels: %s, landmarks: %s)",
        #              self.__class__.__name__, face.shape, channels, landmarks)
        self.landmarks = landmarks
        self.face = face
        self.channels = channels

        mask = self.build_mask()
        self.mask = self.merge_mask(mask)
        #logger.info("Initialized %s", self.__class__.__name__)

    def build_mask(self):
        """ Override to build the mask """
        raise NotImplementedError

    def merge_mask(self, mask):
        """ Return the mask in requested shape """
        #logger.info("mask_shape: %s", mask.shape)
        assert self.channels in (1, 3, 4), "Channels should be 1, 3 or 4"
        assert mask.shape[2] == 1 and mask.ndim == 3, "Input mask be 3 dimensions with 1 channel"

        if self.channels == 3:
            retval = np.tile(mask, 3)
        elif self.channels == 4:
            retval = np.concatenate((self.face, mask), -1)
        else:
            retval = mask

        #logger.info("Final mask shape: %s", retval.shape)
        return retval


class dfl_full(Mask):  # pylint: disable=invalid-name
    """ DFL facial mask """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)

        nose_ridge = (self.landmarks[27:31], self.landmarks[33:34])
        jaw = (self.landmarks[0:17],
               self.landmarks[48:68],
               self.landmarks[0:1],
               self.landmarks[8:9],
               self.landmarks[16:17])
        eyes = (self.landmarks[17:27],
                self.landmarks[0:1],
                self.landmarks[27:28],
                self.landmarks[16:17],
                self.landmarks[33:34])
        parts = [jaw, nose_ridge, eyes]

        for item in parts:
            merged = np.concatenate(item)
            cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.)  # pylint: disable=no-member
        return mask


class components(Mask):  # pylint: disable=invalid-name
    """ Component model mask """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)

        r_jaw = (self.landmarks[0:9], self.landmarks[17:18])
        l_jaw = (self.landmarks[8:17], self.landmarks[26:27])
        r_cheek = (self.landmarks[17:20], self.landmarks[8:9])
        l_cheek = (self.landmarks[24:27], self.landmarks[8:9])
        nose_ridge = (self.landmarks[19:25], self.landmarks[8:9],)
        r_eye = (self.landmarks[17:22],
                 self.landmarks[27:28],
                 self.landmarks[31:36],
                 self.landmarks[8:9])
        l_eye = (self.landmarks[22:27],
                 self.landmarks[27:28],
                 self.landmarks[31:36],
                 self.landmarks[8:9])
        nose = (self.landmarks[27:31], self.landmarks[31:36])
        parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]

        for item in parts:
            merged = np.concatenate(item)
            cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.)  # pylint: disable=no-member
        return mask


class extended(Mask):  # pylint: disable=invalid-name
    """ Extended mask
        Based on components mask. Attempts to extend the eyebrow points up the forehead
    """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)

        landmarks = self.landmarks.copy()
        # mid points between the side of face and eye point
        ml_pnt = (landmarks[36] + landmarks[0]) // 2
        mr_pnt = (landmarks[16] + landmarks[45]) // 2

        # mid points between the mid points and eye
        ql_pnt = (landmarks[36] + ml_pnt) // 2
        qr_pnt = (landmarks[45] + mr_pnt) // 2

        # Top of the eye arrays
        bot_l = np.array((ql_pnt, landmarks[36], landmarks[37], landmarks[38], landmarks[39]))
        bot_r = np.array((landmarks[42], landmarks[43], landmarks[44], landmarks[45], qr_pnt))

        # Eyebrow arrays
        top_l = landmarks[17:22]
        top_r = landmarks[22:27]

        # Adjust eyebrow arrays
        landmarks[17:22] = top_l + ((top_l - bot_l) // 2)
        landmarks[22:27] = top_r + ((top_r - bot_r) // 2)

        r_jaw = (landmarks[0:9], landmarks[17:18])
        l_jaw = (landmarks[8:17], landmarks[26:27])
        r_cheek = (landmarks[17:20], landmarks[8:9])
        l_cheek = (landmarks[24:27], landmarks[8:9])
        nose_ridge = (landmarks[19:25], landmarks[8:9],)
        r_eye = (landmarks[17:22], landmarks[27:28], landmarks[31:36], landmarks[8:9])
        l_eye = (landmarks[22:27], landmarks[27:28], landmarks[31:36], landmarks[8:9])
        nose = (landmarks[27:31], landmarks[31:36])
        parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]

        for item in parts:
            merged = np.concatenate(item)
            cv2.fillConvexPoly(mask, cv2.convexHull(merged), 255.)  # pylint: disable=no-member
        return mask


class facehull(Mask):  # pylint: disable=invalid-name
    """ Basic face hull mask """
    def build_mask(self):
        mask = np.zeros(self.face.shape[0:2] + (1, ), dtype=np.float32)
        hull = cv2.convexHull(  # pylint: disable=no-member
            np.array(self.landmarks).reshape((-1, 2)))
        cv2.fillConvexPoly(mask, hull, 255.0, lineType=cv2.LINE_AA)  # pylint: disable=no-member
        return mask